Physical vapour deposition of ferroelectric and multiferroic tunnel junctions

铁电和多铁隧道结的物理气相沉积

基本信息

项目摘要

Ferroelectric tunnel junctions (FTJs) are the strongest contender to replace flash memory in integrated computer circuitry as they combine low-cost, non-volatility, small footprint, fast read- write cycles, low energy consumption, non-destructive readout and, since very recently, cmos-compatibility. The principle of operation is based on resistive switching between two conductive states that, in the case of FTJs are provided through the distinct state of spontaneous polarization. Intrinsically only a few unit cells thick, they are also suited for integration in crossbar arrays to combine features of memory and logic thus enabling innovative circuit architectures with tremendous potential for energy savings during processor operation. We have very recently demonstrated FTJs with proven CMOS compatibility, using only materials, HfZrO2, that are already part of cmos processing and keeping all process parameters, in particular the deposition temperature, within tolerances. With the proof of concept submitted for patent in collaboration with the industrial partner, the further development of these electronic functions relies for one on the optimization of process parameters for RF magnetron sputtering, a process to be readily adopted from laboratory to fabrication scale. For the other, parasitic switching effects, such as filamentary-mediated resistive switching need to be excluded and the most common failure mechanisms, e.g. point defects, will have to be identified. For this purpose, we collaborate with the electron microscopy and spectroscopy (PEEM) beam line at the Canadian Light Source, Canada's most advanced infrastructure for nanoscale chemical and structural imaging. In order to determine the full potential of these electronic tiles for given specifications (mainly the resistance ratio between on and off state), we collaborate with the NSERC/IBM Canadian industrial research chair to guide the integration towards the most promising circuit architecture. The main objective of this partnership is to develop an industrial main-frame compatible process for a novel non-volatile memory generation to outperform flash in terms of write speed, energy consumption and endurance.
铁电隧道结 (FTJ) 是取代集成计算机电路中闪存的最有力竞争者,因为它们结合了低成本、非易失性、占用空间小、快速读写周期、低能耗、非破坏性读出,并且由于非常适合最近,cmos 兼容性。工作原理基于两种导电状态之间的电阻切换,在 FTJ 的情况下,这两种导电状态是通过不同的自发极化状态提供的。它们本质上只有几个单位单元厚,还适合集成在交叉阵列中,以结合存储器和逻辑的功能,从而实现创新的电路架构,在处理器运行期间具有巨大的节能潜力。我们最近展示了具有经过验证的 CMOS 兼容性的 FTJ,仅使用已成为 CMOS 处理一部分的材料 HfZrO2,并将所有工艺参数(特别是沉积温度)保持在公差范围内。通过与工业合作伙伴合作提交专利概念验证,这些电子功能的进一步开发依赖于射频磁控溅射工艺参数的优化,这是一种很容易从实验室到制造规模采用的工艺。另一方面,需要排除寄生开关效应,例如丝介导的电阻开关,以及最常见的故障机制,例如。必须识别点缺陷。为此,我们与加拿大光源的电子显微镜和光谱 (PEEM) 光束线合作,加拿大光源是加拿大最先进的纳米级化学和结构成像基础设施。为了确定这些电子模块在给定规格(主要是开状态和关状态之间的电阻比)下的全部潜力,我们与 NSERC/IBM 加拿大工业研究主席合作,指导集成到最有前途的电路架构。此次合作的主要目标是为新型非易失性存储器开发一种工业主机兼容工艺,使其在写入速度、能耗和耐用性方面优于闪存。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ruediger, Andreas其他文献

BiFe1-xCrxO3 Ferroelectric Tunnel Junctions for Neuromorphic Systems
  • DOI:
    10.1021/acsaelm.8b00111
  • 发表时间:
    2019-06-01
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Kolhatkar, Gitanjali;Mittermeier, Bernhard;Ruediger, Andreas
  • 通讯作者:
    Ruediger, Andreas
Extreme temperature stability of thermally insulating graphene-mesoporous-silicon nanocomposite
  • DOI:
    10.1088/1361-6528/aaac40
  • 发表时间:
    2018-04-06
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Kolhatkar, Gitanjali;Boucherif, Abderraouf;Ruediger, Andreas
  • 通讯作者:
    Ruediger, Andreas
Ferroelectric Fe-Cr Codoped BaTiO3 Nanoparticles for the Photocatalytic Oxidation of Azo Dyes
  • DOI:
    10.1021/acsanm.9b00336
  • 发表时间:
    2019-05-01
  • 期刊:
  • 影响因子:
    5.9
  • 作者:
    Amaechi, Ifeanyichukwu C.;Youssef, Azza Hadj;Ruediger, Andreas
  • 通讯作者:
    Ruediger, Andreas
A Complementary Metal Oxide Semiconductor Process-Compatible Ferroelectric Tunnel Junction
  • DOI:
    10.1021/acsami.6b16173
  • 发表时间:
    2017-04-19
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Ambriz-Vargas, Fabian;Kolhatkar, Gitanjali;Ruediger, Andreas
  • 通讯作者:
    Ruediger, Andreas
Particle size effect on the photocatalytic kinetics of barium titanate powders
  • DOI:
    10.1039/d0cy01358g
  • 发表时间:
    2020-09-21
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Amaechi, Ifeanyichukwu C.;Katoch, Rajesh;Ruediger, Andreas
  • 通讯作者:
    Ruediger, Andreas

Ruediger, Andreas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ruediger, Andreas', 18)}}的其他基金

Optical near-field study of ferroelectric tunnel junctions
铁电隧道结的光学近场研究
  • 批准号:
    RGPIN-2019-07023
  • 财政年份:
    2022
  • 资助金额:
    $ 14.42万
  • 项目类别:
    Discovery Grants Program - Individual
Development of a modular roll-2-roll printing system for integrated electronic circuitry
开发用于集成电子电路的模块化卷2卷印刷系统
  • 批准号:
    543965-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 14.42万
  • 项目类别:
    Collaborative Research and Development Grants
Optical near-field study of ferroelectric tunnel junctions
铁电隧道结的光学近场研究
  • 批准号:
    RGPIN-2019-07023
  • 财政年份:
    2021
  • 资助金额:
    $ 14.42万
  • 项目类别:
    Discovery Grants Program - Individual
Nanostructured targets for the generation of intense and stable THz radiation
用于产生强烈且稳定的太赫兹辐射的纳米结构靶材
  • 批准号:
    529606-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 14.42万
  • 项目类别:
    Collaborative Research and Development Grants
Development of a modular roll-2-roll printing system for integrated electronic circuitry
开发用于集成电子电路的模块化卷2卷印刷系统
  • 批准号:
    543965-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 14.42万
  • 项目类别:
    Collaborative Research and Development Grants
Optical near-field study of ferroelectric tunnel junctions
铁电隧道结的光学近场研究
  • 批准号:
    RGPIN-2019-07023
  • 财政年份:
    2020
  • 资助金额:
    $ 14.42万
  • 项目类别:
    Discovery Grants Program - Individual
Optical near-field study of ferroelectric tunnel junctions
铁电隧道结的光学近场研究
  • 批准号:
    RGPIN-2019-07023
  • 财政年份:
    2019
  • 资助金额:
    $ 14.42万
  • 项目类别:
    Discovery Grants Program - Individual
Microwave sintering of ink-jet printed copper nanoparticles
喷墨印刷铜纳米粒子的微波烧结
  • 批准号:
    538444-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 14.42万
  • 项目类别:
    Collaborative Research and Development Grants
Nanostructured targets for the generation of intense and stable THz radiation
用于产生强烈且稳定的太赫兹辐射的纳米结构靶材
  • 批准号:
    529606-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 14.42万
  • 项目类别:
    Collaborative Research and Development Grants
Development of a modular roll-2-roll printing system for integrated electronic circuitry
开发用于集成电子电路的模块化卷2卷印刷系统
  • 批准号:
    543965-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 14.42万
  • 项目类别:
    Collaborative Research and Development Grants

相似国自然基金

基于电沉积序构毛细芯的受限空间汽液相变传热强化机理
  • 批准号:
    52276095
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
同步辐射辅助光化学气相沉积技术研究及应用
  • 批准号:
    10575099
  • 批准年份:
    2005
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目
采用金属有机N源研究InN的MOCVD生长及其性质
  • 批准号:
    60576007
  • 批准年份:
    2005
  • 资助金额:
    21.0 万元
  • 项目类别:
    面上项目
在电子回旋共振等离子体中区域高浓度生长氮化镓的研究
  • 批准号:
    59872050
  • 批准年份:
    1998
  • 资助金额:
    11.0 万元
  • 项目类别:
    面上项目
我国油汽田盆地现代构造应力场的研究
  • 批准号:
    49374214
  • 批准年份:
    1993
  • 资助金额:
    7.0 万元
  • 项目类别:
    面上项目

相似海外基金

Physical vapour deposition
物理气相沉积
  • 批准号:
    519675664
  • 财政年份:
    2023
  • 资助金额:
    $ 14.42万
  • 项目类别:
    Major Research Instrumentation
Physical vapour deposition of ferroelectric and multiferroic tunnel junctions
铁电和多铁隧道结的物理气相沉积
  • 批准号:
    506953-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 14.42万
  • 项目类别:
    Strategic Projects - Group
Continuous processing of organic molecules by physical vapour deposition: defining the structure property relationship for thermal stability and film forming
通过物理气相沉积连续处理有机分子:定义热稳定性和成膜的结构特性关系
  • 批准号:
    507168-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 14.42万
  • 项目类别:
    Collaborative Research and Development Grants
Antimicrobial coatings by physical & chemical vapour deposition for application in aerorospace (ANCOP)
物理抗菌涂层
  • 批准号:
    104008
  • 财政年份:
    2018
  • 资助金额:
    $ 14.42万
  • 项目类别:
    Collaborative R&D
Continuous processing of organic molecules by physical vapour deposition: defining the structure property relationship for thermal stability and film forming
通过物理气相沉积连续处理有机分子:定义热稳定性和成膜的结构特性关系
  • 批准号:
    507168-2016
  • 财政年份:
    2017
  • 资助金额:
    $ 14.42万
  • 项目类别:
    Collaborative Research and Development Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了