Bringing Industry 4.0 manufacturing to life: Digital shadows, optimized trajectories, structural controls, and advanced mechatronics

将工业 4.0 制造带入生活:数字阴影、优化轨迹、结构控制和先进机电一体化

基本信息

  • 批准号:
    RGPIN-2019-05334
  • 负责人:
  • 金额:
    $ 4.01万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

The 4th Industrial Revolution (Industry 4.0) aims to establish smart factories with built-in virtualization, monitoring, self-optimization, and control functionalities, to achieve improved manufacturing efficiency and product quality across complete process chains. Each production machine would have a digital simulation model, called a digital shadow', running in parallel to predict, monitor, characterize, optimize, control, and enhance its performance. The current state of knowledge, however, falls short of being able to achieve such an ambitious set of goals in an effective and industrially viable manner. The proposed Discovery program aims to help close this gap, by developing new technologies in support of certain critical functionalities envisioned in Industry 4.0. These include: dynamic model estimation and simulation from in-process manufacturing data, trajectory optimization, on-the-fly process improvement through advanced real-time controls, and novel mechatronic devices to boost manufacturing productivity.******In addition to pursuing deep fundamental research in each of the themes, a holistic and integrative approach is proposed in which the progress and results from every theme will enable far-reaching new ideas to be pursued in the complementary themes. For example, digital shadows will be integrated with trajectory optimization algorithms and with highly efficient 3D solid modeling techniques. Thus, the proposed trajectory optimization will directly consider part quality outcomes as the optimization constraints, rather than the traditionally used kinematic (velocity, acceleration, and jerk) limits of the production machine's moving axes. This direct approach is expected to enable a dramatic reduction in the conservativeness of the generated trajectories, thereby reducing the manufacturing cycle time and enabling the desired part accuracy requirements to be retained. Similar synergies between all theme areas will be actively capitalized upon within this Discovery program, in order to achieve results that are both scientifically new and also industrially innovative and superior.******Overall, this Discovery program targets bold and ambitious new steps towards transforming the state of knowledge in virtual and intelligent manufacturing to the next level, while simultaneously training new highly qualified personnel at postdoctoral, PhD, master's, and undergraduate levels. The University of Waterloo's Precision Controls Laboratory, founded by Prof. Erkorkmaz, has a highly successful record of research in mechatronic devices, modeling, identification, trajectory optimization, precision controls, and process simulation. Many core ideas developed through earlier Discovery programs have led to collaborative follow-up R&D projects with small, medium, and large-scale companies within and outside Canada, and have resulted in technologies and solutions that have been transferred to industry, as well as new commercial products in CNC manufacturing.
第四次工业革命(工业4.0)旨在建立具有内置虚拟化、监控、自我优化和控制功能的智能工厂,以提高整个流程链的制造效率和产品质量。每台生产机器都会有一个数字仿真模型,称为“数字影子”,并行运行以预测、监控、表征、优化、控制和增强其性能。然而,目前的知识状况还不足以以有效且工业上可行的方式实现如此雄心勃勃的目标。拟议的 Discovery 计划旨在通过开发新技术来支持工业 4.0 中设想的某些关键功能,从而帮助缩小这一差距。其中包括:根据过程中的制造数据进行动态模型估计和仿真、轨迹优化、通过先进的实时控制进行动态过程改进,以及提高制造生产力的新型机电设备。******除了通过对每个主题进行深入的基础研究,提出了一种整体和综合的方法,其中每个主题的进展和成果将能够在互补的主题中追求影响深远的新想法。例如,数字阴影将与轨迹优化算法和高效的 3D 实体建模技术集成。因此,所提出的轨迹优化将直接考虑零件质量结果作为优化约束,而不是传统使用的生产机器移动轴的运动学(速度、加速度和加加速度)限制。这种直接方法预计将显着降低生成轨迹的保守性,从而缩短制造周期并保持所需的零件精度要求。在该发现计划中,将积极利用所有主题领域之间的类似协同作用,以实现科学上新颖、工业创新和卓越的成果。******总体而言,该发现计划的目标是大胆而雄心勃勃的新步骤致力于将虚拟和智能制造的知识状态提升到一个新的水平,同时培养博士后、博士、硕士和本科层次的新型高素质人才。滑铁卢大学精密控制实验室由 Erkorkmaz 教授创立,在机电设备、建模、识别、轨迹优化、精密控制和过程仿真方面拥有非常成功的研究记录。通过早期的发现计划开发的许多核心想法已导致与加拿大国内外的小型、中型和大型公司的后续合作研发项目,并产生了已转移到工业界的技术和解决方案以及新的技术和解决方案。 CNC 制造中的商业产品。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Erkorkmaz, Kaan其他文献

Rapid identification technique for virtual CNC drives
In-process digital twin estimation for high-performance machine tools with coupled multibody dynamics
  • DOI:
    10.1016/j.cirp.2020.04.047
  • 发表时间:
    2020-01-01
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Wang, Chia-Pei;Erkorkmaz, Kaan;Engin, Serafettin
  • 通讯作者:
    Engin, Serafettin
Design of a NURBS interpolator with minimal feed fluctuation and continuous feed modulation capability
Virtual CNC system. Part II. High speed contouring application
Design and Optimization of a Voice Coil Actuator for Precision Motion Applications
  • DOI:
    10.1109/tmag.2014.2381160
  • 发表时间:
    2015-06-01
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Okyay, Ahmet;Khamesee, Mir Behrad;Erkorkmaz, Kaan
  • 通讯作者:
    Erkorkmaz, Kaan

Erkorkmaz, Kaan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Erkorkmaz, Kaan', 18)}}的其他基金

Bringing Industry 4.0 manufacturing to life: Digital shadows, optimized trajectories, structural controls, and advanced mechatronics
将工业 4.0 制造带入生活:数字阴影、优化轨迹、结构控制和先进机电一体化
  • 批准号:
    RGPIN-2019-05334
  • 财政年份:
    2022
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Discovery Grants Program - Individual
Bringing Industry 4.0 manufacturing to life: Digital shadows, optimized trajectories, structural controls, and advanced mechatronics
将工业 4.0 制造带入生活:数字阴影、优化轨迹、结构控制和先进机电一体化
  • 批准号:
    RGPIN-2019-05334
  • 财政年份:
    2021
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Discovery Grants Program - Individual
Bringing Industry 4.0 manufacturing to life: Digital shadows, optimized trajectories, structural controls, and advanced mechatronics
将工业 4.0 制造带入生活:数字阴影、优化轨迹、结构控制和先进机电一体化
  • 批准号:
    RGPIN-2019-05334
  • 财政年份:
    2020
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Discovery Grants Program - Individual
Digi-Shape - digital simulation & optimization software for gear shaping
Digi-Shape - 数字模拟
  • 批准号:
    531945-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Idea to Innovation
Quality Influencing Factors Root Cause Analysis and Improvement Strategies for CNC Machining of Fluid Valve Components
流体阀门零部件数控加工质量影响因素根本原因分析及改进策略
  • 批准号:
    532174-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Engage Grants Program
Structural Motion Control and Optimal Trajectory Planning for High-Productivity Manufacturing
高生产率制造的结构运动控制和最佳轨迹规划
  • 批准号:
    RGPIN-2014-03879
  • 财政年份:
    2018
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamic modeling and optimal trajectory planning for multi-axis contour machining for aerospace parts
航空航天零件多轴轮廓加工动态建模与最优轨迹规划
  • 批准号:
    462114-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Collaborative Research and Development Grants
Structural Motion Control and Optimal Trajectory Planning for High-Productivity Manufacturing
高生产率制造的结构运动控制和最佳轨迹规划
  • 批准号:
    RGPIN-2014-03879
  • 财政年份:
    2017
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Discovery Grants Program - Individual
Process Analysis and Optimization for 5-Axis Machining of Automotive Engine Parts
汽车发动机零件五轴加工工艺分析与优化
  • 批准号:
    507178-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Engage Grants Program
Dynamic modeling and optimal trajectory planning for multi-axis contour machining for aerospace parts
航空航天零件多轴轮廓加工动态建模与最优轨迹规划
  • 批准号:
    462114-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Collaborative Research and Development Grants

相似国自然基金

全生命周期碳足迹模型研究:以污水处理行业为例
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    60 万元
  • 项目类别:
货币政策、房企投融资决策与房地产行业转型发展
  • 批准号:
    72374003
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
服务贸易数字化的理论与实证研究:基于电影行业的视角
  • 批准号:
    72373049
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
能源价格冲击下基于多维行业关联网络的行业韧性协同优化研究
  • 批准号:
    72371063
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
中国重点行业碳中和技术创新的驱动机制及政策研究
  • 批准号:
    72374177
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: IRES Track I: Wireless Federated Fog Computing for Remote Industry 4.0 Applications
合作研究:IRES Track I:用于远程工业 4.0 应用的无线联合雾计算
  • 批准号:
    2417064
  • 财政年份:
    2024
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Standard Grant
RoFab-4iDM: Robotic Fabrication of Tunnel Services using Industry 4.0 for Intelligent Distributed Manufacturing
RoFab-4iDM:利用工业 4.0 实现智能分布式制造的隧道服务机器人制造
  • 批准号:
    10080713
  • 财政年份:
    2023
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Collaborative R&D
Ethical Industry 4.0: Embedding Legality, Integrity and Accountability in Digital Manufacturing Ecosystems
道德工业 4.0:将合法性、诚信和责任融入数字制造生态系统
  • 批准号:
    2412678
  • 财政年份:
    2023
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Standard Grant
Collaborative Research: IRES Track I: Wireless Federated Fog Computing for Remote Industry 4.0 Applications
合作研究:IRES Track I:用于远程工业 4.0 应用的无线联合雾计算
  • 批准号:
    2246390
  • 财政年份:
    2023
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Standard Grant
Preparing Manufacturing Technicians for the Challenges of Industry 4.0
让制造技术人员做好应对工业 4.0 挑战的准备
  • 批准号:
    2300650
  • 财政年份:
    2023
  • 资助金额:
    $ 4.01万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了