Ultrafast Electron Scattering to Understand and Control Material Properties
通过超快电子散射了解和控制材料特性
基本信息
- 批准号:RGPIN-2019-06001
- 负责人:
- 金额:$ 3.64万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
There is currently an enormous, world-wide effort directed at the development and application of new experimental methods that make it possible to directly watch' the time-evolving structure of matter. These approaches combine state-of-the-art femtosecond lasers (Nobel Prize in Physics, 2018) and sources of either ultrashort Xray or electron pulses to acquire time-resolved diffraction/scattering patterns and images. At the highest time-resolution achievable in these instruments (<100 fs), atomic motion is essentially frozen during an observation and one can completely follow the microscopic dynamics to produce a "molecular movie" of many fundamental processes. The Siwick group has long been a pioneer in the development of lab-scale ultrafast electron scattering methods and their application to a wide range of fundamental problems in materials physics. A very significant breakthrough was made in 2016-2017 with the perfection of RF electron pulse compression methods which pushed time resolution below 100 fs for the first time and resulted in the instrumentation designed, built and operating at McGill being the most powerful of its kind anywhere in the World. This has set the stage for the proposed program of study, focused squarely on the central question of condensed matter physics; understanding the complex interplay between charge, spin, orbital and lattice-structural degrees of freedom that gives rise to the emergent macroscopic properties of materials. Addressing this broad challenge requires further enhancements in instrumentation, including electron spectroscopy (ultrafast q-EELS), improved time, space and momentum resolution and electron beam coherence that will be pursued through the current proposal. Each of these have been enabled by the robust synchronization of RF cavities to femtosecond lasers that we recently developed. Leveraging these tools, we will pursue a series of pressing problems in materials physics: I) To improve our understanding of the fundamental basis of heat and electronic transport in thermoelectric materials using ultrafast electron diffuse scattering and computational materials approaches in order to facilitate new thermoelectric materials discovery. II) To investigate how optical excitation can be used to control the properties of strongly correlated materials. III) To further our understanding of the momentum-dependent couplings within and between lattice and charge degrees of freedom in strongly anisotropic (1D and 2D) materials that determine phenomena as diverse as superconductivity, charge density waves, thermoelectricity, photovoltaicity and carrier mobility in semiconductors and metals. IV) To shed new light on the many processes that follow the absorption of light in photovoltaic materials. This proposed research program directly targets 3 of the 5 the Grand Challenges for the Basic Energy Sciences outlined in a seminal DOE report and is expected to have enormous impact.
目前,世界范围内正在付出巨大的努力来开发和应用新的实验方法,使直接观察物质随时间演化的结构成为可能。这些方法结合了最先进的飞秒激光器(2018 年诺贝尔物理学奖)和超短 X 射线或电子脉冲源,以获取时间分辨的衍射/散射图案和图像。在这些仪器可实现的最高时间分辨率(<100 fs)下,原子运动在观察过程中基本上被冻结,人们可以完全遵循微观动力学来制作许多基本过程的“分子电影”。 Siwick 小组长期以来一直是实验室规模超快电子散射方法开发及其应用于材料物理中广泛基本问题的先驱。 2016-2017 年,随着射频电子脉冲压缩方法的完善,取得了非常重大的突破,首次将时间分辨率推至 100 fs 以下,并使麦吉尔设计、制造和运行的仪器成为世界上同类仪器中最强大的在世界上。这为拟议的研究计划奠定了基础,该计划直接关注凝聚态物理学的核心问题;了解电荷、自旋、轨道和晶格结构自由度之间复杂的相互作用,从而产生材料的宏观特性。应对这一广泛的挑战需要进一步增强仪器,包括电子能谱(超快q-EELS)、改进的时间、空间和动量分辨率以及电子束相干性,这些将通过当前提案来实现。所有这些都是通过我们最近开发的射频腔与飞秒激光器的强大同步来实现的。 利用这些工具,我们将解决材料物理中的一系列紧迫问题:I)利用超快电子漫散射和计算材料方法,提高我们对热电材料中热和电子传输基本原理的理解,以促进新型热电材料的发展发现。 II) 研究如何利用光激发来控制强相关材料的特性。 III) 进一步了解强各向异性(一维和二维)材料中晶格和电荷自由度内部和之间的动量相关耦合,这些耦合决定了半导体中超导、电荷密度波、热电、光伏和载流子迁移率等多种现象和金属。 IV) 为光伏材料吸收光后的许多过程提供新的线索。 这项拟议的研究计划直接针对美国能源部一份开创性报告中概述的基础能源科学 5 项重大挑战中的 3 项,预计将产生巨大影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Siwick, Bradley其他文献
Siwick, Bradley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Siwick, Bradley', 18)}}的其他基金
Direct Electron Detection Camera for Next-Generation Sensitivity in Ultrafast Electron Scattering Measurements
直接电子探测相机可提高超快电子散射测量中的下一代灵敏度
- 批准号:
RTI-2023-00449 - 财政年份:2022
- 资助金额:
$ 3.64万 - 项目类别:
Research Tools and Instruments
Ultrafast Electron Scattering to Understand and Control Material Properties
通过超快电子散射了解和控制材料特性
- 批准号:
RGPIN-2019-06001 - 财政年份:2022
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Ultrafast Electron Scattering to Understand and Control Material Properties
通过超快电子散射了解和控制材料特性
- 批准号:
RGPIN-2019-06001 - 财政年份:2021
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Ultrafast Electron Scattering to Understand and Control Material Properties
通过超快电子散射了解和控制材料特性
- 批准号:
RGPIN-2019-06001 - 财政年份:2020
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Multi-Mode RF Electron Pulse Compression for Ultrafast Electron Scattering
用于超快电子散射的多模式射频电子脉冲压缩
- 批准号:
RTI-2021-00355 - 财政年份:2020
- 资助金额:
$ 3.64万 - 项目类别:
Research Tools and Instruments
Ultrafast Electron Scattering at Low Temperatures
低温下超快电子散射
- 批准号:
RTI-2019-00586 - 财政年份:2018
- 资助金额:
$ 3.64万 - 项目类别:
Research Tools and Instruments
Ultrafast Structural Dynamics in Materials at Atomic to Microscale Resolution
原子级至微米级分辨率的材料超快结构动力学
- 批准号:
RGPIN-2014-04013 - 财政年份:2018
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
The lockbox: phase-locked temporal lenses for time-resolved electron microscopy
密码箱:用于时间分辨电子显微镜的锁相时间透镜
- 批准号:
530379-2018 - 财政年份:2018
- 资助金额:
$ 3.64万 - 项目类别:
Idea to Innovation
An RF cavity-based ultrafast electron energy loss spectrometer: A new tool for unraveling dynamic processes in materials
基于射频腔的超快电子能量损失谱仪:一种用于揭示材料动态过程的新工具
- 批准号:
RTI-2018-00862 - 财政年份:2017
- 资助金额:
$ 3.64万 - 项目类别:
Research Tools and Instruments
Ultrafast Structural Dynamics in Materials at Atomic to Microscale Resolution
原子级至微米级分辨率的材料超快结构动力学
- 批准号:
RGPIN-2014-04013 - 财政年份:2017
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
蚀刻用含氟分子激发动力学参数的快电子和非弹性X射线散射实验研究
- 批准号:12334010
- 批准年份:2023
- 资助金额:239 万元
- 项目类别:重点项目
基于增强散射诊断的电子回旋尺度湍流对电子热输运影响的实验研究
- 批准号:12375216
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
内磁层中纬区域合声波的特征分布及其对电子的散射效应研究
- 批准号:42374201
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
真实Weyl半金属中电子-声子散射主导的磁输运性质:基于第一原理计算的理论研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
乙烯与聚乙烯分子内壳层电子激发的非弹性X射线散射研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Direct Electron Detection Camera for Next-Generation Sensitivity in Ultrafast Electron Scattering Measurements
直接电子探测相机可提高超快电子散射测量中的下一代灵敏度
- 批准号:
RTI-2023-00449 - 财政年份:2022
- 资助金额:
$ 3.64万 - 项目类别:
Research Tools and Instruments
Ultrafast Electron Scattering to Understand and Control Material Properties
通过超快电子散射了解和控制材料特性
- 批准号:
RGPIN-2019-06001 - 财政年份:2022
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Ultrafast Electron Scattering to Understand and Control Material Properties
通过超快电子散射了解和控制材料特性
- 批准号:
RGPIN-2019-06001 - 财政年份:2021
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Multi-Mode RF Electron Pulse Compression for Ultrafast Electron Scattering
用于超快电子散射的多模式射频电子脉冲压缩
- 批准号:
RTI-2021-00355 - 财政年份:2020
- 资助金额:
$ 3.64万 - 项目类别:
Research Tools and Instruments
Ultrafast Electron Scattering to Understand and Control Material Properties
通过超快电子散射了解和控制材料特性
- 批准号:
RGPIN-2019-06001 - 财政年份:2020
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual