Algorithms for generalized Arthur packets for general linear groups

一般线性群的广义阿瑟包算法

基本信息

  • 批准号:
    540624-2019
  • 负责人:
  • 金额:
    $ 0.33万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    University Undergraduate Student Research Awards
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

No summary - Aucun sommaire
没有总结 - Aucun sommaire

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kitt, Nicole其他文献

Kitt, Nicole的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kitt, Nicole', 18)}}的其他基金

Characterization of Cofree Representations of Connected Semi-simple Lie Groups
连通半单李群 Cofree 表示的表征
  • 批准号:
    547756-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Characterization of Cofree Representations of Connected Semi-simple Lie Groups
连通半单李群 Cofree 表示的表征
  • 批准号:
    547756-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Characterization of Cofree Representations of Connected Semi-simple Lie Groups
连通半单李群 Cofree 表示的表征
  • 批准号:
    547756-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Characterization of Cofree Representations of Connected Semi-simple Lie Groups
连通半单李群 Cofree 表示的表征
  • 批准号:
    547756-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Vanishing Cycles of Equivariant Perverse Sheaves on Vogan Varieties of Type A
A型Vogan品种等变反常滑轮的消失周期
  • 批准号:
    544723-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Vanishing Cycles of Equivariant Perverse Sheaves on Vogan Varieties of Type A
A型Vogan品种等变反常滑轮的消失周期
  • 批准号:
    544723-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's

相似国自然基金

广义定向张量分解理论及其在多传感信号处理中的应用
  • 批准号:
    52305115
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于广义定转子拓扑解构的爬壁机器人电磁驱动-吸附一体化机理研究
  • 批准号:
    52305022
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于广义流变力学模型的新型黏弹性超声成像方法研究
  • 批准号:
    12304516
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
广义四元数代数上的若干超矩阵方程组及应用
  • 批准号:
    12371023
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
基于广义分数阶算子的火成岩非线性蠕变本构模型及动力学研究
  • 批准号:
    12372010
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目

相似海外基金

Unique continuation and the regularity of elliptic PDEs and generalized minimal submanifolds
椭圆偏微分方程和广义最小子流形的唯一延拓和正则性
  • 批准号:
    2350351
  • 财政年份:
    2024
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Standard Grant
Kac-Moody quantum symmetric pairs, KLR algebras and generalized Schur-Weyl duality
Kac-Moody 量子对称对、KLR 代数和广义 Schur-Weyl 对偶性
  • 批准号:
    EP/W022834/1
  • 财政年份:
    2023
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Fellowship
Canonical Singularities, Generalized Symmetries, and 5d Superconformal Field Theories
正则奇点、广义对称性和 5d 超共形场论
  • 批准号:
    EP/X01276X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Fellowship
Application of the cluster nonequilibrium relaxation scheme (generalized to quantum systems and off-critical regions) to random systems
簇非平衡弛豫方案(推广到量子系统和非临界区)在随机系统中的应用
  • 批准号:
    23K03269
  • 财政年份:
    2023
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Generalized dualities and compactifications in string theory
弦理论中的广义对偶性和紧化
  • 批准号:
    23K03391
  • 财政年份:
    2023
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了