Unique continuation and the regularity of elliptic PDEs and generalized minimal submanifolds

椭圆偏微分方程和广义最小子流形的唯一延拓和正则性

基本信息

  • 批准号:
    2350351
  • 负责人:
  • 金额:
    $ 25.37万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-06-01 至 2027-05-31
  • 项目状态:
    未结题

项目摘要

This award supports research on the regularity of solutions to elliptic partial differential equations and regularity of generalized minimal submanifolds. Elliptic differential equations govern the equilibrium configurations of various physical phenomena, for instance, those arising from minimization problems for natural energy functionals. Examples include the shape of free-hanging bridges, the shape of soap bubbles, and the sound of drums. Elliptic differential equations are also used to quantify the degree to which physical objects are bent or distorted, with far-reaching implications and applications in geometry and topology. The proposed research focuses on the regularity of solutions to such equations. Questions to be addressed include the following: Do non-smooth points (singularities) exist? How large can the set of singularities be? What is the behavior of the solution near a singularity? Is it possible to perturb the underlying environment in order to eliminate the singularity? The project will also provide opportunities for the professional development of graduate students, both via individual mentoring and via the organization of a directed learning seminar on geometric analysis and geometric measure theory.The mathematical objectives of the project are twofold. First, the principal investigator will study unique continuation for solutions to elliptic partial differential equations, with a focus on quantitative estimates on the size and structure of the singular set of these solutions. A second topic for consideration is the regularity theory for generalized minimal submanifolds (a generalized notion of smooth submanifolds which arise as critical points for the area functional under local deformations). In particular, the principal investigator will study branch singular points in the interior as well as at the boundary of a generalized minimal submanifold, under an area-minimizing or stability assumption. Research on the latter topic, which can be viewed as a non-linear analogue of quantitative unique continuation for elliptic equations, requires the integration of ideas from geometric measure theory, partial differential equations and geometric analysis.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持对椭圆偏微分方程解的正则性和广义最小子流形正则性的研究。椭圆微分方程控制各种物理现象的平衡配置,例如,自然能量泛函的最小化问题引起的平衡配置。例如,自由悬挂的桥梁的形状、肥皂泡的形状和鼓的声音。椭圆微分方程还用于量化物理对象弯曲或扭曲的程度,在几何和拓扑中具有深远的影响和应用。拟议的研究重点是此类方程的解的规律性。要解决的问题包括以下内容:是否存在非光滑点(奇点)?奇点集可以有多大?奇点附近的解的行为是什么?是否有可能扰动底层环境以消除奇点?该项目还将通过个人指导和组织几何分析和几何测量理论的定向学习研讨会,为研究生的专业发展提供机会。该项目的数学目标是双重的。首先,首席研究员将研究椭圆偏微分方程解的唯一延拓,重点是对这些解的奇异集的大小和结构的定量估计。第二个需要考虑的主题是广义最小子流形的正则理论(平滑子流形的广义概念,作为局部变形下面积泛函的临界点而出现)。特别是,主要研究者将在面积最小化或稳定性假设下研究广义最小子流形内部和边界的分支奇点。后一个主题的研究可以看作是椭圆方程定量唯一延拓的非线性模拟,需要整合几何测度论、偏微分方程和几何分析的思想。该奖项反映了 NSF 的法定使命,并已被通过使用基金会的智力优点和更广泛的影响审查标准进行评估,认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zihui Zhao其他文献

BMO Solvability and A ∞ Condition of the Elliptic Measures in Uniform Domains
均匀域椭圆测度的BMO可解性和A ∞ 条件
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zihui Zhao
  • 通讯作者:
    Zihui Zhao
Identification of mitophagy-related hub genes during the progression of spinal cord injury by integrated multinomial bioinformatics analysis
通过综合多项生物信息学分析鉴定脊髓损伤进展过程中线粒体自噬相关的中枢基因
  • DOI:
    10.1016/j.bbrep.2024.101654
  • 发表时间:
    2024-02-13
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Zhihao Guo;Zihui Zhao;Xiaoge Wang;Jie Zhou;Jie Liu;W. Plunet;Wenjie Ren;Linqiang Tian
  • 通讯作者:
    Linqiang Tian
Investigation of steam jet flash evaporation with solar thermal collectors in water desalination systems
海水淡化系统中太阳能集热器蒸汽喷射闪蒸研究
  • DOI:
    10.1016/j.tsep.2020.100710
  • 发表时间:
    2020-12-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. W. Ezzat;E. Hu;Hussein M. Taqi Al;Zihui Zhao;Xin Shu
  • 通讯作者:
    Xin Shu
Photoinduced synthesis of gold nanoparticle–bacterial cellulose nanocomposite and its application for in-situ detection of trace concentration of dyes in textile and paper
金纳米粒子-细菌纤维素纳米复合材料的光诱导合成及其在纺织品和纸张中痕量染料浓度原位检测中的应用
  • DOI:
    10.1007/s10570-018-1850-z
  • 发表时间:
    2018-05-18
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Xu Zhou;Zihui Zhao;Ying He;Y. Ye;Ji Zhou;Jin Zhang;Ouyang Quan;Bin Tang;Xungai Wang
  • 通讯作者:
    Xungai Wang
Erlang planning network: An iterative model-based reinforcement learning with multi-perspective
Erlang规划网络:基于迭代模型的多视角强化学习
  • DOI:
    10.1016/j.patcog.2022.108668
  • 发表时间:
    2022-03-01
  • 期刊:
  • 影响因子:
    8
  • 作者:
    Jiao Wang;Lemin Zhang;Zhengbing He;Can Zhu;Zihui Zhao
  • 通讯作者:
    Zihui Zhao

Zihui Zhao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zihui Zhao', 18)}}的其他基金

PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    1902756
  • 财政年份:
    2019
  • 资助金额:
    $ 25.37万
  • 项目类别:
    Fellowship Award

相似国自然基金

历史的延续:家族涉入的家族化起源依赖与家族企业创新行为研究
  • 批准号:
    72262006
  • 批准年份:
    2022
  • 资助金额:
    28 万元
  • 项目类别:
    地区科学基金项目
层积视角下上海近代非保护类私家园林文脉延续与活化利用路径研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于结构延续性拓展的无纺布滤材三维重建
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
针刺调控SIRT3延续性研究——保护线粒体自噬-合成平衡促AD小鼠突触可塑性机制
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    56 万元
  • 项目类别:

相似海外基金

Unique Continuation and Regularity of Mappings and Functions in Several Complex Variables
多复变量映射和函数的唯一连续性和正则性
  • 批准号:
    2323531
  • 财政年份:
    2023
  • 资助金额:
    $ 25.37万
  • 项目类别:
    Standard Grant
Unique Continuation and Regularity of Mappings and Functions in Several Complex Variables
多复变量映射和函数的唯一连续性和正则性
  • 批准号:
    2152487
  • 财政年份:
    2022
  • 资助金额:
    $ 25.37万
  • 项目类别:
    Standard Grant
Unique Continuation and Regularity of CR Mappings
CR映射的独特延续性和规律性
  • 批准号:
    1855737
  • 财政年份:
    2019
  • 资助金额:
    $ 25.37万
  • 项目类别:
    Standard Grant
Optimal Regularity for Nonlinear Pde's and Systems in Carnot-Caratheodory Spaces and Applications to Geometry, Symmetry for Pde's, Unique Continuation
卡诺-卡拉特奥多里空间中非线性偏微分方程和系统的最优正则性及其几何应用、偏微分方程的对称性、唯一延拓
  • 批准号:
    9706892
  • 财政年份:
    1997
  • 资助金额:
    $ 25.37万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Unique Continuation, Regularity of Solutions to Linear and Nonlinear Equations of Nonelliptic Type, Symmetry for PDE's
数学科学:非椭圆型线性和非线性方程解的唯一连续性、正则性、偏微分方程的对称性
  • 批准号:
    9404358
  • 财政年份:
    1994
  • 资助金额:
    $ 25.37万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了