Computability and Decision Procedures for Number Theory and Combinatorics

数论和组合学的可计算性和决策程序

基本信息

  • 批准号:
    RGPIN-2018-04118
  • 负责人:
  • 金额:
    $ 3.5万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Broadly speaking, my research involves two different areas and how they interact. The first area concerns mathematical models of simple computers ("automata") and their capabilities. The second area concerns the basics of pure mathematics: number theory, combinatorics, and algebra. Although these two areas superficially seem quite separated, in reality they are closely connected. How can we use insights from automata theory to contribute to pure mathematics, and vice versa? And can we use automated theorem-proving to prove our mathematical insights "purely mechanically"?******To take an example, consider additive number theory: the study of how to represent numbers as the sum of members of a given set. This is a well-studied area of pure mathematics that includes such celebrated results as Waring's theorem on sums of powers of integers (proved by Hilbert), and the Goldbach conjecture about sums of primes (still unproved). Recently, Cilleruelo, Luca, and Baxter proved that, for bases b ≥ 5, every natural number is the sum of at most three numbers whose base-b representation is a palindrome (a number that reads the same forwards and backwards, like the English word radar). But they were unable to prove this for bases b = 2, 3, 4.******My collaborators and I completed the additive theory of the palindromes for the remaining cases, using automata theory and a decision procedure. For example, to handle the case of base b = 2, we rephrased the assertion "every natural number is the sum of at most four binary palindromes" as a claim about the computational behavior of a particular automaton A. We then used a known decision procedure for the universality problem for this class of automata to prove that our automaton A has the specified behavior. This is just one of many similar problems that are amenable to this approach.******I propose to apply these ideas to many other problems in number theory, combinatorics, and algebra. I will identify suitable problems, search for appropriate computational models that can resolve them, and apply decision procedures to prove the theorems. I will also direct the preparation of free software, so that other mathematicians and computer scientists can use this approach in their own work. Already some open-source software, called Walnut, has been created by my student Hamoon Mousavi, and is being used by other researchers.******My work actively involves the training of highly-qualified personnel, ranging from undergraduate students to postdoctoral researchers. These are essential to my work, both for solving problems and for writing software.
从广义上讲,我的研究涉及两个不同的领域和互动。使用自动机理论的见解有助于纯数学,反之亦然?作为纯数学的夏天,脚趾数字包括Waring的著名成果,例如Hilbert的整数总和(Hilbert证明),以及有关PRAPERS的Goldbach猜想(仍然没有证明) ,Baxter证明,对于B≥5的基础,每个自然数字是三个数字的总和。 ***我的合作者和剩余的al palindromes,例如使用自动机和复仇者来处理基本b = 2的情况,我们改写了“每个自然数字。关于此类的特定自动机的索赔,我只是与该方法相似的问题之一。 ,搜索可以解决它们的适当计算模型,并应用了Hematicians,计算机科学家可以在自己的工作中使用此方法。 D人员,从地下学生到博士后研究人员,这对于我的工作至关重要,无论是解决问题还是写作软件。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shallit, Jeffrey其他文献

Avoiding 3/2-powers over the natural numbers
  • DOI:
    10.1016/j.disc.2011.12.019
  • 发表时间:
    2012-03-28
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Rowland, Eric;Shallit, Jeffrey
  • 通讯作者:
    Shallit, Jeffrey
Avoiding squares and overlaps over the natural numbers
  • DOI:
    10.1016/j.disc.2009.06.004
  • 发表时间:
    2009-11-06
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Guay-Paquet, Mathieu;Shallit, Jeffrey
  • 通讯作者:
    Shallit, Jeffrey
A pattern sequence approach to Stern's sequence
  • DOI:
    10.1016/j.disc.2011.07.029
  • 发表时间:
    2011-11-28
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Coons, Michael;Shallit, Jeffrey
  • 通讯作者:
    Shallit, Jeffrey
Efficient enumeration of words in regular languages
  • DOI:
    10.1016/j.tcs.2009.03.018
  • 发表时间:
    2009-09-01
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Ackerman, Margareta;Shallit, Jeffrey
  • 通讯作者:
    Shallit, Jeffrey
ENUMERATION AND DECIDABLE PROPERTIES OF AUTOMATIC SEQUENCES

Shallit, Jeffrey的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shallit, Jeffrey', 18)}}的其他基金

Computability and Decision Procedures for Number Theory and Combinatorics
数论和组合学的可计算性和决策程序
  • 批准号:
    RGPIN-2018-04118
  • 财政年份:
    2022
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Computability and Decision Procedures for Number Theory and Combinatorics
数论和组合学的可计算性和决策程序
  • 批准号:
    RGPIN-2018-04118
  • 财政年份:
    2021
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Computability and Decision Procedures for Number Theory and Combinatorics
数论和组合学的可计算性和决策程序
  • 批准号:
    RGPIN-2018-04118
  • 财政年份:
    2020
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Computability and Decision Procedures for Number Theory and Combinatorics
数论和组合学的可计算性和决策程序
  • 批准号:
    RGPIN-2018-04118
  • 财政年份:
    2019
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Avoidability and Decidability in Formal Languages and Automata
形式语言和自动机中的可避免性和可判定性
  • 批准号:
    105829-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Avoidability and Decidability in Formal Languages and Automata
形式语言和自动机中的可避免性和可判定性
  • 批准号:
    105829-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Avoidability and Decidability in Formal Languages and Automata
形式语言和自动机中的可避免性和可判定性
  • 批准号:
    105829-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Avoidability and Decidability in Formal Languages and Automata
形式语言和自动机中的可避免性和可判定性
  • 批准号:
    105829-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Avoidability and Decidability in Formal Languages and Automata
形式语言和自动机中的可避免性和可判定性
  • 批准号:
    105829-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Descriptional complexity, combinatorics on words, formal languages and number theory
描述复杂性、单词组合学、形式语言和数论
  • 批准号:
    105829-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

单细胞翻译组新技术研发及其调控早期胚胎细胞命运决定机制研究
  • 批准号:
    32330063
  • 批准年份:
    2023
  • 资助金额:
    231 万元
  • 项目类别:
    重点项目
可变面元问题对线性回归中决定系数的影响机制研究
  • 批准号:
    42301471
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
解析γδT细胞及其祖细胞的起源层级和命运决定
  • 批准号:
    82300131
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
丝尾鳠Y染色体的解析及其性别决定基因的鉴定
  • 批准号:
    32302989
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
蛋白质降解决定因子的生物信息学筛选及其耐药突变的多组学分析研究
  • 批准号:
    32300528
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Identifying Predictors of Condom Use
确定安全套使用的预测因素
  • 批准号:
    10821861
  • 财政年份:
    2024
  • 资助金额:
    $ 3.5万
  • 项目类别:
Frontocortical representations of amygdala-mediated learning under uncertainty
不确定性下杏仁核介导的学习的额皮质表征
  • 批准号:
    10825354
  • 财政年份:
    2024
  • 资助金额:
    $ 3.5万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    10549476
  • 财政年份:
    2023
  • 资助金额:
    $ 3.5万
  • 项目类别:
Examining the multilevel factors on quality of end-of-life care among cancer patients in Puerto Rico
检查影响波多黎各癌症患者临终关怀质量的多层次因素
  • 批准号:
    10557584
  • 财政年份:
    2023
  • 资助金额:
    $ 3.5万
  • 项目类别:
Addressing Gaps in Language Access Services through a Patient-Centered Decision-Support Tool
通过以患者为中心的决策支持工具解决语言获取服务中的差距
  • 批准号:
    10699030
  • 财政年份:
    2023
  • 资助金额:
    $ 3.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了