A four-channel superconducting single-photon counter for next-generation quantum light sources, ultrafast quantum optics, and foundational experiments
用于下一代量子光源、超快量子光学和基础实验的四通道超导单光子计数器
基本信息
- 批准号:RTI-2019-00047
- 负责人:
- 金额:$ 10.93万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Research Tools and Instruments
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Optical technologies have widespread impact in modern life through a range of applications, including medical imaging and surgery, communication, machining, and precision measurement. Quantum optical technologies aim to exploit the uniquely quantum properties of light to process and communicate information as efficiently as nature allows. Since quantum optical technologies rely on our ability to detect and generate light, significant advances in detectors directly enable technological breakthroughs.******Until very recently, the best single-photon detectors available were silicon avalanche photodiodes (APDs). A focused effort on developing a superior alternative has led to the realization and commercialization of superconducting nanowire single-photon detectors (SNSPDs). These detectors offer dramatically improved detection efficiency of near infrared and telecom band single photons, and significantly reduced dark count noise and temporal jitter. They exceed the specifications of silicon avalanche photodiodes in these critical parameters to such an extent that they represent a technological turning point in quantum optical technologies. We are requesting funds to acquire a four-channel superconducting single-photon detection system that comprises four detection channels and a closed-cycle cryostat.******This detection system will afford my group with a significant competitive advantage going forward in experimental quantum optics research. In the near term, this system will enable advances in the following research streams pursued by my team: next-generation quantum light sources, ultrafast quantum optics, and foundational experiments. Their improved detection efficiency and low noise will allow us to perform multiphoton entanglement experiments in just 1 hour, instead of several days using current detectors. They will allow us to take advantage of the best nonlinear optical materials facilitating the strongest possible interactions between ultrafast laser pulses and single photons. They will provide the photon collection efficiency needed to perform the ultimate loophole free tests of quantum noncontextuality, a very useful and general signature of quantum behavior.******The detectors will be used immediately for the thesis research of 3 graduate students and will be accessed in the future by additional highly-qualified personnel (HQP) at all levels, including undergraduate and post-doctoral researchers. The HQP will gain extensive experience with state-of-the-art detectors as well as lasers, optics, and cryogenics. Their research results will be presented in top-tier scientific journals and international conferences, thereby gaining valuable oral and written communication skill, enhancing their profile, and launching their own careers.**
光学技术通过一系列应用对现代生活产生广泛影响,包括医学成像和手术、通信、加工和精密测量。量子光学技术旨在利用光独特的量子特性,在自然界允许的情况下尽可能有效地处理和传输信息。由于量子光学技术依赖于我们检测和产生光的能力,因此探测器的重大进步直接实现了技术突破。********直到最近,最好的单光子探测器还是硅雪崩光电二极管 (APD)。专注于开发更好的替代方案已导致超导纳米线单光子探测器(SNSPD)的实现和商业化。这些探测器显着提高了近红外和电信波段单光子的探测效率,并显着降低了暗计数噪声和时间抖动。它们在这些关键参数方面超出了硅雪崩光电二极管的规格,以至于它们代表了量子光学技术的技术转折点。我们正在申请资金购买一个四通道超导单光子探测系统,该系统包括四个探测通道和一个闭环低温恒温器。******这个探测系统将为我的团队在未来的实验中提供显着的竞争优势量子光学研究。在短期内,该系统将使我的团队所追求的以下研究领域取得进展:下一代量子光源、超快量子光学和基础实验。它们提高的探测效率和低噪声将使我们能够在短短 1 小时内完成多光子纠缠实验,而不是使用当前探测器需要几天的时间。它们将使我们能够利用最好的非线性光学材料,促进超快激光脉冲和单光子之间最强的相互作用。它们将提供执行量子非上下文性的最终无漏洞测试所需的光子收集效率,这是量子行为的一个非常有用且通用的签名。******探测器将立即用于 3 名研究生的论文研究和未来将由更多的各级高素质人员(HQP)使用,包括本科生和博士后研究人员。总部将在最先进的探测器以及激光、光学和低温技术方面获得丰富的经验。他们的研究成果将在顶级科学期刊和国际会议上发表,从而获得宝贵的口头和书面沟通技巧,提升他们的形象,并开启自己的职业生涯。 **
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Resch, Kevin其他文献
Resch, Kevin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Resch, Kevin', 18)}}的其他基金
Optical Quantum Technologies
光量子技术
- 批准号:
CRC-2017-00174 - 财政年份:2022
- 资助金额:
$ 10.93万 - 项目类别:
Canada Research Chairs
Optical Quantum Technologies
光量子技术
- 批准号:
CRC-2017-00174 - 财政年份:2022
- 资助金额:
$ 10.93万 - 项目类别:
Canada Research Chairs
Optical Quantum Technologies
光量子技术
- 批准号:
CRC-2017-00174 - 财政年份:2021
- 资助金额:
$ 10.93万 - 项目类别:
Canada Research Chairs
Optical Quantum Technologies
光量子技术
- 批准号:
CRC-2017-00174 - 财政年份:2021
- 资助金额:
$ 10.93万 - 项目类别:
Canada Research Chairs
Advancing optical quantum technology using next generation light sources, ultrafast quantum optics, and foundational experiments
利用下一代光源、超快量子光学和基础实验推进光量子技术
- 批准号:
RGPIN-2017-03738 - 财政年份:2021
- 资助金额:
$ 10.93万 - 项目类别:
Discovery Grants Program - Individual
Advancing optical quantum technology using next generation light sources, ultrafast quantum optics, and foundational experiments
利用下一代光源、超快量子光学和基础实验推进光量子技术
- 批准号:
RGPIN-2017-03738 - 财政年份:2021
- 资助金额:
$ 10.93万 - 项目类别:
Discovery Grants Program - Individual
Advancing optical quantum technology using next generation light sources, ultrafast quantum optics, and foundational experiments
利用下一代光源、超快量子光学和基础实验推进光量子技术
- 批准号:
RGPIN-2017-03738 - 财政年份:2020
- 资助金额:
$ 10.93万 - 项目类别:
Discovery Grants Program - Individual
Optical Quantum Technologies
光量子技术
- 批准号:
CRC-2017-00174 - 财政年份:2020
- 资助金额:
$ 10.93万 - 项目类别:
Canada Research Chairs
Advancing optical quantum technology using next generation light sources, ultrafast quantum optics, and foundational experiments
利用下一代光源、超快量子光学和基础实验推进光量子技术
- 批准号:
RGPIN-2017-03738 - 财政年份:2020
- 资助金额:
$ 10.93万 - 项目类别:
Discovery Grants Program - Individual
Optical Quantum Technologies
光量子技术
- 批准号:
CRC-2017-00174 - 财政年份:2020
- 资助金额:
$ 10.93万 - 项目类别:
Canada Research Chairs
相似国自然基金
考虑社会网络效应的全渠道服务系统运营决策与战略竞合研究
- 批准号:72301245
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
考虑消费者信息搜索行为的零售商全渠道运营决策及协调机制研究
- 批准号:72302106
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
城市分布式储能的全渠道共享运营模式设计与优化
- 批准号:72301027
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
考虑消费者展厅行为的BOPS全渠道供应链优化研究
- 批准号:72302170
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
节能降碳技术空间扩散的传播渠道、隐性壁垒与优化政策研究
- 批准号:72304047
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
ERI: EMRadar: A Practical Sensing System on the Electromagnetic Side-Channel of IoT
ERI:EMRadar:物联网电磁侧信道的实用传感系统
- 批准号:
2347409 - 财政年份:2024
- 资助金额:
$ 10.93万 - 项目类别:
Standard Grant
Collaborative Research: FET: Small: Reservoir Computing with Ion-Channel-Based Memristors
合作研究:FET:小型:基于离子通道忆阻器的储层计算
- 批准号:
2403560 - 财政年份:2024
- 资助金额:
$ 10.93万 - 项目类别:
Standard Grant
Terahertz Imaging for Side-Channel Attacks
用于侧信道攻击的太赫兹成像
- 批准号:
NI230100072 - 财政年份:2024
- 资助金额:
$ 10.93万 - 项目类别:
National Intelligence and Security Discovery Research Grants
Collaborative Research: FET: Small: Reservoir Computing with Ion-Channel-Based Memristors
合作研究:FET:小型:基于离子通道忆阻器的储层计算
- 批准号:
2403559 - 财政年份:2024
- 资助金额:
$ 10.93万 - 项目类别:
Standard Grant
Uncovering the Functional Effects of Neurotrophins in the Auditory Brainstem
揭示神经营养素对听觉脑干的功能影响
- 批准号:
10823506 - 财政年份:2024
- 资助金额:
$ 10.93万 - 项目类别: