Machine learning for the insurance industry: predictive models, fraud detection, and fairness

保险行业的机器学习:预测模型、欺诈检测和公平性

基本信息

  • 批准号:
    529584-2018
  • 负责人:
  • 金额:
    $ 6.33万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Collaborative Research and Development Grants
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

At the heart of their mission, the insurance industry strives to satisfy their customers and offer them the insurance products that most adequately match their needs. Thanks to a vast amount of corporate data accumulated through the years, to the availability of impressive computational resources, and to the current state of knowledge of machine learning research, insurance companies can now attempt to build effective predictive models about some aspects of client behaviour and their needs. However, insurance companies are also accountable to our society and, in particular, this implies that they should not offer any service and coverage that is, in some way, discriminatory in terms of race, skin colour, ethnic origin, or other irrelevant characteristics that are, arguably, immoral to use. In that sense, the insurance industry should also be fair in the services that they provide. ****Consequently, this research proposal aims at advancing the current state of knowledge in areas of machine learning research, which are mostly relevant to the insurance industry. More precisely, from the corporate data at SSQ, we aim at building the most accurate, and fair, predictive models for customer needs of insurance products and for some aspects of customer behaviour, such as the likelihood that a client will not renew a given insurance policy. We also aim at building accurate, and fair, fraud detectors with the ability to detect fraud at an early stage and the ability to detect new types of fraud. To meet these objectives, we will need to adapt existing machine learning algorithms in novel ways and design new ones such that they can use and combine different data sources during learning, some of which are sequential in nature. Moreover, we will also need to find ways to enforce fairness into machine learning algorithms such that the predictors output by them will not be using irrelevant sensible attributes (such as race, ethnic origin, religion, etc.) in a way that makes them perform unevenly across different groups of individuals.**********************
在他们的任务中,保险业致力于满足客户的满足,并为他们提供最适合其需求的保险产品。多年来积累的大量公司数据,令人印象深刻的计算资源以及机器学习研究的当前知识状态,保险公司现在可以尝试建立有关客户行为及其需求的某些方面的有效预测模型。但是,保险公司也对我们的社会负责,尤其是这意味着他们不应在某种程度上提供任何在种族,肤色,种族血统或其他无关的特征方面具有歧视性的服务和覆盖范围,这些特征可以说是不道德使用的。从这个意义上讲,保险业也应该在其提供的服务中公平。 ****因此,该研究建议旨在推进机器学习研究领域的当前知识状态,这些领域与保险行业大多相关。更确切地说,从SSQ的公司数据来看,我们旨在为保险产品的客户需求以及客户行为的某些方面建立最准确,最公平的预测模型,例如客户不会续订给定的保险单。我们还旨在建立准确且公平的欺诈探测器,能够在早期发现欺诈和检测新型欺诈的能力。为了实现这些目标,我们将需要以新颖的方式调整现有的机器学习算法并设计新的算法,以便它们可以在学习过程中使用并结合不同的数据源,其中一些本质上是顺序的。此外,我们还需要找到方法来在机器学习算法中实施公平性,以使他们的预测变量不会使用不相关的明智属性(例如种族,种族,宗教,宗教等),以使它们在不同的个人群体中执行不均匀。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marchand, Mario其他文献

Marchand, Mario的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marchand, Mario', 18)}}的其他基金

Machine learning for the insurance industry: predictive models, fraud detection, and fairness
保险行业的机器学习:预测模型、欺诈检测和公平性
  • 批准号:
    529584-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 6.33万
  • 项目类别:
    Collaborative Research and Development Grants
Towards more efficient machine learning algorithms: theory and practice
迈向更高效的机器学习算法:理论与实践
  • 批准号:
    RGPIN-2016-05942
  • 财政年份:
    2021
  • 资助金额:
    $ 6.33万
  • 项目类别:
    Discovery Grants Program - Individual
DEEL DEpendable & Explainable Learning
DEEL 值得信赖
  • 批准号:
    537462-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 6.33万
  • 项目类别:
    Collaborative Research and Development Grants
Towards more efficient machine learning algorithms: theory and practice
迈向更高效的机器学习算法:理论与实践
  • 批准号:
    RGPIN-2016-05942
  • 财政年份:
    2020
  • 资助金额:
    $ 6.33万
  • 项目类别:
    Discovery Grants Program - Individual
Machine learning for the insurance industry: predictive models, fraud detection, and fairness
保险行业的机器学习:预测模型、欺诈检测和公平性
  • 批准号:
    529584-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 6.33万
  • 项目类别:
    Collaborative Research and Development Grants
Towards more efficient machine learning algorithms: theory and practice
迈向更高效的机器学习算法:理论与实践
  • 批准号:
    RGPIN-2016-05942
  • 财政年份:
    2019
  • 资助金额:
    $ 6.33万
  • 项目类别:
    Discovery Grants Program - Individual
Machine learning for the insurance industry: predictive models, fraud detection, and fairness
保险行业的机器学习:预测模型、欺诈检测和公平性
  • 批准号:
    529584-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 6.33万
  • 项目类别:
    Collaborative Research and Development Grants
Towards more efficient machine learning algorithms: theory and practice
迈向更高效的机器学习算法:理论与实践
  • 批准号:
    RGPIN-2016-05942
  • 财政年份:
    2018
  • 资助金额:
    $ 6.33万
  • 项目类别:
    Discovery Grants Program - Individual
Towards more efficient machine learning algorithms: theory and practice
迈向更高效的机器学习算法:理论与实践
  • 批准号:
    RGPIN-2016-05942
  • 财政年份:
    2017
  • 资助金额:
    $ 6.33万
  • 项目类别:
    Discovery Grants Program - Individual
Towards more efficient machine learning algorithms: theory and practice
迈向更高效的机器学习算法:理论与实践
  • 批准号:
    RGPIN-2016-05942
  • 财政年份:
    2016
  • 资助金额:
    $ 6.33万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

基于深度学习的大尺度重磁异常正反演研究
  • 批准号:
    42374174
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
在线碎片化学习对“数字游民”型员工数字能力与创新绩效的影响机制研究
  • 批准号:
    72301088
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于因果小样本学习的卫星用空间轴承可信故障诊断方法
  • 批准号:
    52375089
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
机理模型与数据混合驱动的空间遥操作学习控制方法研究
  • 批准号:
    62373305
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向海量重力卫星观测数据精化处理的机器学习方法研究
  • 批准号:
    42374004
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Identifying and addressing missingness and bias to enhance discovery from multimodal health data
识别和解决缺失和偏见,以增强多模式健康数据的发现
  • 批准号:
    10637391
  • 财政年份:
    2023
  • 资助金额:
    $ 6.33万
  • 项目类别:
Integrated Network Analysis of RADx-UP Data to Increase COVID-19 Testing and Vaccination Among Persons Involved with Criminal Legal Systems (PCLS)
RADx-UP 数据的综合网络分析可提高刑事法律系统 (PCLS) 相关人员的 COVID-19 检测和疫苗接种率
  • 批准号:
    10879972
  • 财政年份:
    2023
  • 资助金额:
    $ 6.33万
  • 项目类别:
The Subdural Hematoma Outcomes in a Population (SD HOP) Study
硬膜下血肿人群 (SD HOP) 研究结果
  • 批准号:
    10591861
  • 财政年份:
    2023
  • 资助金额:
    $ 6.33万
  • 项目类别:
A Next Generation Data Infrastructure to Understand Disparities across the Life Course
下一代数据基础设施可了解整个生命周期的差异
  • 批准号:
    10588092
  • 财政年份:
    2023
  • 资助金额:
    $ 6.33万
  • 项目类别:
Customising weather index insurance for agribusiness using machine learning
使用机器学习为农业企业定制天气指数保险
  • 批准号:
    IE230100435
  • 财政年份:
    2023
  • 资助金额:
    $ 6.33万
  • 项目类别:
    Early Career Industry Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了