Understanding and controlling electronic correlation and instability: toward functional quantum matter
理解和控制电子相关性和不稳定性:走向功能量子物质
基本信息
- 批准号:RGPIN-2014-04554
- 负责人:
- 金额:$ 5.1万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The development of quantum mechanics in the early 20th century gave us the power to understand and control the properties of materials, such as semiconductors and ferromagnets, that led to the technological revolution that produced computers, high-speed communications devices, remote sensors, and so on. To put it simply, without the several decades of condensed matter research that led to our understanding of semiconductors, the cell phone that you carry around in your pocket would be the size of a house.**Our understanding of simple materials such as semiconductors comes from understanding what happens at the atomic scale. Starting in the latter part of the 20th century, however, a new class of materials emerged whose properties are much more subtle, because they result from interactions of vast numbers of electrons spread over distances much larger than an atom. The theory of these so-called "strongly correlated" systems is a deep intellectual problem that may hold the key to the next generation of technology. **The goal of our research is to discover and understand these new "emergent" materials, through a combination of chemistry, and measurements at high pressures and high magnetic fields. We believe that the high pressure route in particular offers a good way to discover novel and potentially useful states of materials. The properties that we seek are things like high temperature superconductivity and so-called "topological" states, that may provide electronics with low heat dissipation, or even elements for quantum computation. **In the short-term our results will be important to other physicists who are investigating similar materials, but in the longer term it is likely that research on strongly correlated materials will lead to breakthrough technologies. Indeed this is already happening, for example, with high temperature superconductors that are leading to important advances in magnet technology, which will greatly improve magnetic resonance probes used in biomedical research.**Our results will be published in scientific journals, however the benefits of our research are only partly in the knowledge gained: even more important are the people who we train in advanced materials science research, who can help to establish a thriving materials science industry in Canada.
20 世纪初量子力学的发展使我们有能力理解和控制半导体和铁磁体等材料的特性,从而引发了技术革命,产生了计算机、高速通信设备、远程传感器等在。 简而言之,如果没有几十年的凝聚态研究让我们了解半导体,你口袋里随身携带的手机将有房子那么大。**我们对半导体等简单材料的了解来了从了解原子尺度上发生的事情。 然而,从 20 世纪下半叶开始,出现了一种新型材料,其特性更加微妙,因为它们是由分布在比原子大得多的距离上的大量电子相互作用产生的。 这些所谓的“强相关”系统的理论是一个深刻的智力问题,可能掌握着下一代技术的关键。 **我们研究的目标是通过结合化学以及高压和高磁场下的测量来发现和理解这些新的“新兴”材料。 我们相信,高压路线尤其提供了一种发现新的和潜在有用的材料状态的好方法。我们寻求的特性是高温超导性和所谓的“拓扑”态,它们可以为电子设备提供低散热性,甚至可以为量子计算提供元件。 **短期内,我们的结果对于其他正在研究类似材料的物理学家来说很重要,但从长远来看,对强相关材料的研究可能会带来突破性技术。 事实上,这种情况已经发生,例如,高温超导体正在导致磁体技术的重要进步,这将极大地改进生物医学研究中使用的磁共振探针。 **我们的结果将发表在科学期刊上,但是我们的研究仅部分在于获得的知识:更重要的是我们在先进材料科学研究方面培训的人员,他们可以帮助在加拿大建立蓬勃发展的材料科学产业。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Julian, Stephen其他文献
Julian, Stephen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Julian, Stephen', 18)}}的其他基金
Exploring connections between superconductivity, unconventional quantum order, and Fermi surface reconstruction
探索超导性、非常规量子序和费米表面重构之间的联系
- 批准号:
RGPIN-2019-06446 - 财政年份:2022
- 资助金额:
$ 5.1万 - 项目类别:
Discovery Grants Program - Individual
Exploring connections between superconductivity, unconventional quantum order, and Fermi surface reconstruction
探索超导性、非常规量子序和费米表面重构之间的联系
- 批准号:
RGPIN-2019-06446 - 财政年份:2022
- 资助金额:
$ 5.1万 - 项目类别:
Discovery Grants Program - Individual
Exploring connections between superconductivity, unconventional quantum order, and Fermi surface reconstruction
探索超导性、非常规量子级和费米表面重建之间的联系
- 批准号:
RGPIN-2019-06446 - 财政年份:2021
- 资助金额:
$ 5.1万 - 项目类别:
Discovery Grants Program - Individual
Exploring connections between superconductivity, unconventional quantum order, and Fermi surface reconstruction
探索超导性、非常规量子级和费米表面重建之间的联系
- 批准号:
RGPIN-2019-06446 - 财政年份:2021
- 资助金额:
$ 5.1万 - 项目类别:
Discovery Grants Program - Individual
Exploring connections between superconductivity, unconventional quantum order, and Fermi surface reconstruction
探索超导性、非常规量子级和费米表面重建之间的联系
- 批准号:
RGPIN-2019-06446 - 财政年份:2020
- 资助金额:
$ 5.1万 - 项目类别:
Discovery Grants Program - Individual
Exploring connections between superconductivity, unconventional quantum order, and Fermi surface reconstruction
探索超导性、非常规量子级和费米表面重建之间的联系
- 批准号:
RGPIN-2019-06446 - 财政年份:2020
- 资助金额:
$ 5.1万 - 项目类别:
Discovery Grants Program - Individual
Exploring connections between superconductivity, unconventional quantum order, and Fermi surface reconstruction
探索超导性、非常规量子级和费米表面重建之间的联系
- 批准号:
RGPIN-2019-06446 - 财政年份:2019
- 资助金额:
$ 5.1万 - 项目类别:
Discovery Grants Program - Individual
Exploring connections between superconductivity, unconventional quantum order, and Fermi surface reconstruction
探索超导性、非常规量子级和费米表面重建之间的联系
- 批准号:
RGPIN-2019-06446 - 财政年份:2019
- 资助金额:
$ 5.1万 - 项目类别:
Discovery Grants Program - Individual
Experimental Condensed Matter Physics
实验凝聚态物理
- 批准号:
1000220447-2010 - 财政年份:2018
- 资助金额:
$ 5.1万 - 项目类别:
Canada Research Chairs
Experimental Condensed Matter Physics
实验凝聚态物理
- 批准号:
1000220447-2010 - 财政年份:2018
- 资助金额:
$ 5.1万 - 项目类别:
Canada Research Chairs
相似国自然基金
面向电子束熔丝沉积成形多闭环实时控制的智能视觉传感
- 批准号:52375349
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
多有源桥多端口电力电子变压器的高效运行和协调控制研究
- 批准号:52307193
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向电子病历后结构化的混杂因素控制方法研究
- 批准号:62302151
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
构网型和跟网型电力电子装备混联系统的P/ω导纳建模和惯量匹配控制研究
- 批准号:52207102
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多孔液体的电子束辐照可控制备及其微结构与CO2吸附性能构效关系的正电子湮没研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Understanding and Controlling Electronic Transport via Proteins: Nanoscale Electrode Architecture-enabled Energy Level Alignment
通过蛋白质理解和控制电子传输:纳米级电极架构支持的能级对齐
- 批准号:
397966586 - 财政年份:2018
- 资助金额:
$ 5.1万 - 项目类别:
Research Grants
Understanding and controlling electronic correlation and instability: toward functional quantum matter
理解和控制电子相关性和不稳定性:走向功能量子物质
- 批准号:
RGPIN-2014-04554 - 财政年份:2017
- 资助金额:
$ 5.1万 - 项目类别:
Discovery Grants Program - Individual
Understanding and Controlling Defects, Disorder and Electronic Transport in High Mobility Perovskite Oxides
了解和控制高迁移率钙钛矿氧化物中的缺陷、无序和电子传输
- 批准号:
1741801 - 财政年份:2017
- 资助金额:
$ 5.1万 - 项目类别:
Continuing Grant
Understanding and controlling electronic correlation and instability: toward functional quantum matter
理解和控制电子相关性和不稳定性:走向功能量子物质
- 批准号:
RGPIN-2014-04554 - 财政年份:2017
- 资助金额:
$ 5.1万 - 项目类别:
Discovery Grants Program - Individual
Understanding and controlling electronic correlation and instability: toward functional quantum matter
理解和控制电子相关性和不稳定性:走向功能量子物质
- 批准号:
RGPIN-2014-04554 - 财政年份:2016
- 资助金额:
$ 5.1万 - 项目类别:
Discovery Grants Program - Individual