Development of innovative fusion strategies and methods to improve vegetation characterization from multi-sensor remotely sensed data

开发创新的融合策略和方法,以改善多传感器遥感数据的植被特征

基本信息

  • 批准号:
    RGPIN-2015-06563
  • 负责人:
  • 金额:
    $ 1.6万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

The long term goal of this proposed research program is to develop innovative integration strategies and fusion methods for the scientific advancement related to the accurate characterization of vegetation canopies from remotely sensed data. It is motivated and driven by technological developments in remote sensing and the demand for advancing science and innovation in vegetation characterization. Rapidly developed remote sensing technologies are making earth observation data widely available in unprecedented volume and detail; and meanwhile recent years have witnessed an increased demand for accurate determination of a growing number of attributes of vegetation canopies using remote sensing for sustainable management of forest resources, environment protection, and precision agriculture. The critical question we currently face is how to effectively utilize these data and intelligently integrate them together to improve vegetation characterization, such as the determination of vegetation types and conditions.*******Even though data/information fusion is not a new topic in the remote sensing community, the increasing number and heterogeneity of information sources, coupled with the complexity of vegetation canopies leads to an increasing demand for advanced methods  to fully exploit the available technologies, geospatial data, and accumulated knowledge. In this research, I propose innovative integration strategies that are active, intelligent and adaptive, and physics-and knowledge-based, representing a new paradigm in data fusion. These strategies deal with not only methodologies for information combination, but also mechanisms for information selection which actively control and manage the fusion process. With them, the whole scene is not necessarily analyzed in the same way; information and procedures used can be adaptive to local characteristics.*******The long-term research goal will be achieved through fulfilling the following short-term objectives addressing three important aspects in the characterization of vegetation canopies that are unique in term of algorithm development. (1) Developing intelligent integration approaches to improve individual tree crown delineation. (2) Developing innovative methods to adaptively combine all information obtained from different data sources and improve forest species classification. (3) Developing knowledge-based progressive inversion strategies to improve the retrieval of vegetation parameters using the multi-source remotely sensed data.*******The success of this program will have a great impact on research and development of information fusion and vegetation characterization. Research results will generate new knowledge and improve our understanding of different sensing technologies and their integrations in vegetation characterization and advance scientific and industrial applications.*********
这项提出的计划的长期是,从遥感的数据和植被表征中的科学和创新的需求中,开发了对植被檐篷的准确性的融合策略和融合方法前所未有的数量和细节;与此同时,人们对使用遥感的植被罐头的属性进行了越来越多的需求,以实现对森林资源的可持续管理,环境保护和精确农业的可持续性。数据将它们共同改善植被的表征,植被类型和条件。在这项研究中,对可用的技术,地理空间数据和累积知识的需求。对于以相同的方式分析的信息,我们的融合过程不必要。在算法开发的植被檐篷方面的三个重要方面。 * ******* THE SULL HAVE A GREAT IMPACT OND Development of Information Fusion and Vegetation Characterization. Rch Results Will Generate New Knowledge and IMPROVE OF DIFFERENT SENSING TECHNOLOGIES AND THEIR INTEGRATIONS in CAATATITION ERIZATION and ADVANCE SCIENTIEC And Industrial Applications. ** *********

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hu, Baoxin其他文献

An individual tree crown delineation method based on multi-scale segmentation of imagery
Improving the efficiency and accuracy of individual tree crown delineation from high-density LiDAR data
Estimating crop stresses, aboveground dry biomass and yield of corn using multi-temporal optical data combined with a radiation use efficiency model
  • DOI:
    10.1016/j.rse.2010.01.004
  • 发表时间:
    2010-06-15
  • 期刊:
  • 影响因子:
    13.5
  • 作者:
    Liu, Jiangui;Pattey, Elizabeth;Hu, Baoxin
  • 通讯作者:
    Hu, Baoxin
Automated Delineation of Individual Tree Crowns from Lidar Data by Multi-Scale Analysis and Segmentation
Comparative study between a new nonlinear model and common linear model for analysing laboratory simulated-forest hyperspectral data

Hu, Baoxin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hu, Baoxin', 18)}}的其他基金

Smart deep learning by incorporating remote sensing domain knowledge in vegetation characterization
将遥感领域知识融入植被表征中的智能深度学习
  • 批准号:
    RGPIN-2021-03624
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Smart deep learning by incorporating remote sensing domain knowledge in vegetation characterization
将遥感领域知识融入植被表征中的智能深度学习
  • 批准号:
    RGPIN-2021-03624
  • 财政年份:
    2021
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Development of innovative fusion strategies and methods to improve vegetation characterization from multi-sensor remotely sensed data
开发创新的融合策略和方法,以改善多传感器遥感数据的植被特征
  • 批准号:
    RGPIN-2015-06563
  • 财政年份:
    2019
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Improving the characterization of permafrost using polarimetric SAR interferometry (pol-inSAR)
使用偏振 SAR 干涉测量 (pol-inSAR) 改善永久冻土的表征
  • 批准号:
    513708-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Collaborative Research and Development Grants
Improving the characterization of permafrost using polarimetric SAR interferometry (pol-inSAR)
使用偏振 SAR 干涉测量 (pol-inSAR) 改善永久冻土的表征
  • 批准号:
    513708-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Collaborative Research and Development Grants
A GIS-based system for assessing emerald ash borer infestation
基于 GIS 的白蜡虫侵染评估系统
  • 批准号:
    490711-2015
  • 财政年份:
    2018
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Collaborative Research and Development Grants
Development of innovative fusion strategies and methods to improve vegetation characterization from multi-sensor remotely sensed data
开发创新的融合策略和方法,以改善多传感器遥感数据的植被特征
  • 批准号:
    RGPIN-2015-06563
  • 财政年份:
    2017
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
A GIS-based system for assessing emerald ash borer infestation
基于 GIS 的白蜡虫侵染评估系统
  • 批准号:
    490711-2015
  • 财政年份:
    2017
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Collaborative Research and Development Grants
Development of innovative fusion strategies and methods to improve vegetation characterization from multi-sensor remotely sensed data
开发创新的融合策略和方法,以改善多传感器遥感数据的植被特征
  • 批准号:
    RGPIN-2015-06563
  • 财政年份:
    2016
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Development of innovative fusion strategies and methods to improve vegetation characterization from multi-sensor remotely sensed data
开发创新的融合策略和方法,以改善多传感器遥感数据的植被特征
  • 批准号:
    RGPIN-2015-06563
  • 财政年份:
    2015
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

中国城市文化融合的创新合作效应、机理与政策设计
  • 批准号:
    72303235
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高光谱-光合-育种信息融合的小麦抗旱性高通量评价体系构建与种质资源创新
  • 批准号:
    32370400
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向未来产业的“四链”融合创新发展机制与政策研究
  • 批准号:
    72304163
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
政策创新的时空扩散、效应评估及其路径优化研究——以中国文化和旅游产业融合政策为例
  • 批准号:
    42271238
  • 批准年份:
    2022
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
蚕丝制药--重组鲎C因子在家蚕丝腺中高效可溶性表达的技术融合创新研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Development of Innovative Robot Polishing Technology by Model Based Simulation and Optimization involving AI
通过人工智能的基于模型的仿真和优化开发创新的机器人抛光技术
  • 批准号:
    22K03866
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developing an Innovative Decision Support Tool for Pediatric Neuromuscular Scoliosis
开发儿童神经肌肉脊柱侧凸的创新决策支持工具
  • 批准号:
    10449660
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
Developing an Innovative Decision Support Tool for Pediatric Neuromuscular Scoliosis
开发儿童神经肌肉脊柱侧凸的创新决策支持工具
  • 批准号:
    10663314
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
Development of an Innovative Electrosynthesis Method of Diamond from Carbon Dioxide at Atmospheric Pressure
开发一种创新的常压二氧化碳电合成金刚石方法
  • 批准号:
    21K19024
  • 财政年份:
    2021
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Development of innovative therapy for autoantibody-related disorders using fusion proteins combining IgG1Fc and extracellular domains of target antigen.
使用结合 IgG1Fc 和靶抗原细胞外结构域的融合蛋白开发针对自身抗体相关疾病的创新疗法。
  • 批准号:
    21K19438
  • 财政年份:
    2021
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了