Optimization and High-Order Fast Algorithms Applied to Microwave Imaging

应用于微波成像的优化和高阶快速算法

基本信息

  • 批准号:
    RGPIN-2014-04142
  • 负责人:
  • 金额:
    $ 1.82万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

The research program proposed herein aims to develop a set of high-performance computational tools that can be applied to optimize the design of microwave imaging (MWI) systems and to use these tools to discover and design state-of-the-art next-generation MWI systems for biomedical and agricultural applications. The motivation for this research is based on recent work that suggests proper system design and modelling will improve MWI resolution, making MWI more amenable to imaging applications. The proposed computational methods will reduce both the computing power necessary to perform MWI and the complexity of the systems, resulting in lower costs for industrial installations.MWI has been the subject of significant research in the areas of biomedical imaging, security measures and non-destructive quality assurance. We have recently extended its application to the area of monitoring the quality of stored grain crops where there is a need for a tool that is sensitive to the entire contents of a storage container. MWI is attractive because it is both safe (non-ionizing) and inexpensive. The goal of MWI is to non-invasively reconstruct a model of the electrical properties of an irradiated target from a sampling of the electromagnetic fields external to the target. Knowledge of the target properties has practical uses such as tumour detection in biomedical applications, and early detection of rot conditions during grain storage. The adoption of MWI for many applications has been hindered by the relatively low resolution obtained from standard MWI systems, despite the fact that there is no known resolution limit except the signal-to-noise ratio in the measured data, and by the computational cost associated with generating images.Historically, research on MWI has been focused on inversion algorithms. More recently, attempts have been made to quantify the amount of retrievable target information contained in the data as a function of noise. To complement this work, effort will be devoted to improving forward solver accuracy and adjusting controllable system parameters (transmitter/receiver position/type, profile/boundaries of the external medium) in an attempt to improve and/or optimize MWI resolution capabilities and minimize modelling error. To accomplish these goals we will develop a novel parallel, high-order, frequency-domain, software package for solving Maxwell’s equations and then apply this numerical tool to optimization procedures for determining the best transmitter/receiver configurations and external electromagnetic property profiles that balance the cost of system implementation with the accuracy of the images that are produced. I will use the software tools to design, implement and test innovative MWI systems for breast cancer detection and grain storage monitoring. The resulting MWI systems will provide enhanced resolution and faster image generation times at a lower cost. These tools will also enable Canadian research groups to improve the imaging accuracy of their own MWI systems for breast cancer detection, with the goal of a robust, affordable, mass-screening tool to permit early diagnosis of one of the leading causes of premature death amongst Canadian women. Grain-storage MWI systems are innovative, novel, and important to Canada for securing our grain stores for both domestic consumption and export. This work will be undertaken at the University of Manitoba, an institution with an established record for research in both MWI, at the Electromagnetic Imaging Lab, and grain storage monitoring, at the Centre for Grain Storage Research. The outcomes of the proposed research will strengthen Canada’s role in developing emerging technologies that will benefit both Canadians and the global population.
本文提出的研究计划旨在开发一套高性能计算工具,可用于优化微波成像(MWI)系统的设计,并使用这些工具来发现和设计最先进的下一代用于生物医学和农业应用的 MWI 系统这项研究的动机是基于最近的工作,该工作表明适当的系统设计和建模将提高 MWI 分辨率,使 MWI 更适合成像应用。所提出的计算方法将降低所需的计算能力。执行 MWI 和复杂性系统,从而降低工业装置的成本。MWI 一直是生物医学成像、安全措施和无损质量保证领域的重要研究主题,我们最近将其应用扩展到了质量监控领域。需要对存储容器的全部内容物敏感的储存谷物作物的情况很有吸引力,因为它既安全(非电离)又便宜。 MWI 的目标是非侵入性地重建作物。辐射电特性模型从目标外部的电磁采样中获取目标属性的知识领域具有实际用途,例如生物医学应用中的肿瘤检测以及谷物储存期间腐烂状况的早期检测。尽管事实上除了测量数据中的信噪比之外没有已知的分辨率限制,而且由于与生成图像相关的计算成本,标准 MWI 系统获得的分辨率相对较低。历史上,MWI 的研究一直是专注于反转最近,人们尝试将数据中包含的可检索目标信息量量化为噪声的函数。为了补充这项工作,我们将致力于提高前向求解器的精度并调整可控系统参数(发射机/接收机)。外部介质的位置/类型、轮廓/边界),以试图提高和/或优化 MWI 分辨率能力并最小化建模误差。为了实现这些目标,我们将开发一种新颖的并行、高阶、频域软件包。用于解决麦克斯韦方程,然后将该数值工具应用于优化程序,以确定最佳的发射器/接收器配置和外部电磁属性配置文件,以平衡系统实现的成本与生成的图像的准确性,我将使用软件工具进行设计,实施和测试用于乳腺癌检测和谷物储存监测的创新 MWI 系统,所得 MWI 系统将以更低的成本提供更高的分辨率和更快的图像生成时间。这些工具还将帮助加拿大研究小组提高其自己的 MWI 的成像精度。乳房系统癌症检测,其目标是提供一种强大、负担得起的大规模筛查工具,以便对加拿大妇女过早死亡的主要原因之一进行早期诊断。粮食储存 MWI 系统是创新的、新颖的,对于加拿大确保我们的安全至关重要。这项工作将在曼尼托巴大学进行,该大学在电磁成像实验室的 MWI 和谷物储存研究中心的谷物储存监测方面拥有良好的研究记录。 .结果拟议的研究将加强加拿大在开发新兴技术方面的作用,这些技术将造福加拿大人和全球人口。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeffrey, Ian其他文献

Jeffrey, Ian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeffrey, Ian', 18)}}的其他基金

Establishing Confidence in Wavefield Images for Agricultural and Biomedical Applications
建立对农业和生物医学应用波场图像的信心
  • 批准号:
    RGPIN-2020-05677
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Establishing Confidence in Wavefield Images for Agricultural and Biomedical Applications
建立对农业和生物医学应用波场图像的信心
  • 批准号:
    RGPIN-2020-05677
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Establishing Confidence in Wavefield Images for Agricultural and Biomedical Applications
建立对农业和生物医学应用波场图像的信心
  • 批准号:
    RGPIN-2020-05677
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Establishing Confidence in Wavefield Images for Agricultural and Biomedical Applications
建立对农业和生物医学应用波场图像的信心
  • 批准号:
    RGPIN-2020-05677
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Establishing Confidence in Wavefield Images for Agricultural and Biomedical Applications
建立对农业和生物医学应用波场图像的信心
  • 批准号:
    RGPIN-2020-05677
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Establishing Confidence in Wavefield Images for Agricultural and Biomedical Applications
建立对农业和生物医学应用波场图像的信心
  • 批准号:
    RGPIN-2020-05677
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Optimization and High-Order Fast Algorithms Applied to Microwave Imaging
应用于微波成像的优化和高阶快速算法
  • 批准号:
    RGPIN-2014-04142
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Optimization and High-Order Fast Algorithms Applied to Microwave Imaging
应用于微波成像的优化和高阶快速算法
  • 批准号:
    RGPIN-2014-04142
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Automated Processing of Remote Sensing Satellite Imagery using Machine Learning
使用机器学习自动处理遥感卫星图像
  • 批准号:
    531267-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Engage Grants Program
Optimization and High-Order Fast Algorithms Applied to Microwave Imaging
应用于微波成像的优化和高阶快速算法
  • 批准号:
    RGPIN-2014-04142
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

不确定非线性系统凸优化模糊自适应命令滤波反步控制及应用
  • 批准号:
    62303255
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于Order的SIS/LWE变体问题及其应用
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
针对动态无线充电系统的基于事件触发和命令滤波的保性能控制方法研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
染色质三维构象新型调控因子的机制研究
  • 批准号:
    31900431
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
不同环境规制下绿色创新效应研究:微观机制与政策选择
  • 批准号:
    71903063
  • 批准年份:
    2019
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Optimization and High-Order Fast Algorithms Applied to Microwave Imaging
应用于微波成像的优化和高阶快速算法
  • 批准号:
    RGPIN-2014-04142
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Optimization and High-Order Fast Algorithms Applied to Microwave Imaging
应用于微波成像的优化和高阶快速算法
  • 批准号:
    RGPIN-2014-04142
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Optimization and High-Order Fast Algorithms Applied to Microwave Imaging
应用于微波成像的优化和高阶快速算法
  • 批准号:
    RGPIN-2014-04142
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Optimization and High-Order Fast Algorithms Applied to Microwave Imaging
应用于微波成像的优化和高阶快速算法
  • 批准号:
    RGPIN-2014-04142
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Optimization and High-Order Fast Algorithms Applied to Microwave Imaging
应用于微波成像的优化和高阶快速算法
  • 批准号:
    RGPIN-2014-04142
  • 财政年份:
    2016
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了