Multiscale modeling of epithelial tissue dynamics and engineering

上皮组织动力学和工程的多尺度建模

基本信息

  • 批准号:
    RGPIN-2014-05862
  • 负责人:
  • 金额:
    $ 2.55万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

The prospect of growing artificial tissues and organs in the lab is generating much excitement, with the recent reports of human retina and brain tissues grown from embryonic stem cells. However, great scientific and technical barriers remain to be surmounted before widespread clinical use becomes reality. The potential benefits for health care, where artificial tissues can be implanted to restore, repair, and improve the function of failing natural organs, are as enormous as the challenges are daunting. Progress will hinge on new research in two areas: developmental biology and biomaterials engineering. The research proposed here seeks a nonconventional approach that integrates molecular-genetic information from developmental biology with engineering knowledge of the mechanics of epithelial tissues. This integration is motivated by the fact that biological tissues grow not only according to a genetic blueprint, but also subject to the mechanical forces and deformation in their physical environment. Mechanically, soft tissues often behave in ways that resemble complex fluids and soft solids. The central idea of this proposal is to translate computational methods developed for complex fluids and soft matter to a novel class of problems in the dynamics and growth of epithelial issues. Epithelium refers to the skin that encloses organs and embryos. It is also the key structure that folds during early development of embryos to form internal organs. Toward a quantitative understanding of such processes, we develop a mathematical model that bridges the cellular scale and the much larger tissue scale. A crucial feature of the model is to properly capture the information exchange between the two scales. For example, sustained stress on a skin tissue tends to trigger structural changes in polymers that form the skeleton of each cell, and to dissolve the adhesive connection among neighboring cells. Thus the whole tissue can deform or “flow”. In return, small-scale biochemistry inside a cell produces signaling proteins that control cell division and death, and these events ultimately feed back to the overall behavior of the tissue on the large scale. We further carry out computer simulations of various scenarios of tissue growth, adapting an extensive numerical toolkit that we have developed for the dynamics of complex fluids, interfaces and soft membranes. In scientific terms, we expect two major outcomes from this research. The first is to lay the foundation for a quantitative understanding of epithelium dynamics. In particular, we wish to clarify how mechanical forcing and deformation change the properties of a tissue and affect its ability to grow under laboratory conditions. The second is to develop the ability to solve “inverse problems” in tissue engineering. That is the ability to prescribe optimal experimental conditions and protocols that will produce the desired morphology for a tissue or organ. Such outcomes will be major advances toward the goal of custom-designed artificial organs, with far-reaching health-care benefits for Canada and beyond. A less tangible but equally important benefit of the research will be the specialized training of young scientists in this emerging field. They will be exposed to cutting edge, interdisciplinary research that uses physics and engineering tools to study biology and to inform medicine. This will prepare them for the expanding frontiers of Research and Development in the decades to come.
最近有报道称,在实验室中培育人造组织和器官的前景令人兴奋,但在广泛的临床应用成为现实之前,仍需克服巨大的科学和技术障碍。可以植入人造组织来恢复、修复和改善衰竭的自然器官的功能,这对医疗保健的潜在好处是巨大的,但挑战却是艰巨的,进展将取决于两个领域的新研究:发育生物学和生物材料。这里提出的研究寻求一种工程。将发育生物学的分子遗传信息与上皮组织力学的工程知识相结合的非常规方法,这种整合的动机是生物组织不仅根据遗传蓝图生长,而且还受到机械力和变形的影响。从机械角度来看,软组织的行为方式通常类似于复杂流体和软固体。该提案的中心思想是将针对复杂流体和软物质开发的计算方法转化为动力学和软物质中的一类新问题。的增长上皮细胞是指包围器官和胚胎的皮肤,它也是胚胎早期发育过程中折叠形成内脏器官的关键结构,为了定量理解这些过程,我们开发了一个连接细胞尺度的数学模型。该模型的一个关键特征是正确捕获两个尺度之间的信息交换,例如,皮肤组织上的持续压力往往会引发形成每个细胞骨架的聚合物的结构变化。来溶解因此,整个组织会变形或“流动”,作为回报,细胞内的小规模生物化学会产生控制细胞分裂和死亡的信号蛋白,这些事件最终会反馈到组织的整体行为。我们进一步对组织生长的各种场景进行计算机模拟,采用我们为复杂流体、界面和软膜动力学开发的广泛数值工具包,从科学角度来说,我们预计会产生两个主要成果。一是奠定研究基础。特别是,我们希望阐明机械力和变形如何改变组织的特性并影响其在实验室条件下生长的能力。这就是制定最佳实验条件和方案的能力,从而产生组织或器官所需的形态,这将是实现定制设计人造器官目标的重大进步,并具有深远的医疗保健作用。对加拿大及其他地区的好处不太明显。但这项研究同样重要的好处是对这一新兴领域的年轻科学家进行专门培训,他们将接触到利用物理和工程工具来研究生物学并为医学提供信息的前沿、跨学科研究。在未来几十年扩大研究和开发的前沿。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Feng, James其他文献

Utilization of a Novel Opioid-Sparing Protocol in Primary Total Hip Arthroplasty Results in Reduced Opiate Consumption and Improved Functional Status
  • DOI:
    10.1016/j.arth.2020.02.009
  • 发表时间:
    2020-06-01
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Feng, James;Mahure, Siddharth A.;Davidovitch, Roy, I
  • 通讯作者:
    Davidovitch, Roy, I
Revision Total Knee Arthroplasty Is Associated With Significantly Higher Opioid Consumption as Compared With Primary Total Knee Arthroplasty in the Acute Postoperative Period.
  • DOI:
    10.1016/j.artd.2020.04.001
  • 发表时间:
    2020-06-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bernstein, Jenna;Feng, James;Long, William
  • 通讯作者:
    Long, William

Feng, James的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Feng, James', 18)}}的其他基金

Hydrogel two-phase flows: hydrodynamics and applications
水凝胶两相流:流体动力学和应用
  • 批准号:
    RGPIN-2019-04162
  • 财政年份:
    2022
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Hydrogel two-phase flows: hydrodynamics and applications
水凝胶两相流:流体动力学和应用
  • 批准号:
    RGPIN-2019-04162
  • 财政年份:
    2021
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Hydrogel two-phase flows: hydrodynamics and applications
水凝胶两相流:流体动力学和应用
  • 批准号:
    RGPIN-2019-04162
  • 财政年份:
    2020
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Hydrogel two-phase flows: hydrodynamics and applications
水凝胶两相流:流体动力学和应用
  • 批准号:
    RGPIN-2019-04162
  • 财政年份:
    2019
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Multiscale modeling of epithelial tissue dynamics and engineering
上皮组织动力学和工程的多尺度建模
  • 批准号:
    RGPIN-2014-05862
  • 财政年份:
    2018
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Multiscale modeling of epithelial tissue dynamics and engineering
上皮组织动力学和工程的多尺度建模
  • 批准号:
    RGPIN-2014-05862
  • 财政年份:
    2016
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Multiscale modeling of epithelial tissue dynamics and engineering
上皮组织动力学和工程的多尺度建模
  • 批准号:
    RGPIN-2014-05862
  • 财政年份:
    2015
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Multiscale modeling of epithelial tissue dynamics and engineering
上皮组织动力学和工程的多尺度建模
  • 批准号:
    RGPIN-2014-05862
  • 财政年份:
    2014
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Complex Fluids and Interfaces
复杂流体和界面
  • 批准号:
    1000210682-2008
  • 财政年份:
    2013
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Canada Research Chairs
Novel strategies for producing and manipulating microdrops on a patterned substrate
在图案化基底上产生和操纵微滴的新策略
  • 批准号:
    298360-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

定制亲疏油图案与仿生微造型耦合的复合沟槽阵列表面润滑增效机理及应用
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
几何造型与机器学习融合的图像数据拟合问题研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
产能共享背景下的制造型企业运营决策研究:基于信息共享与数据质量的视角
  • 批准号:
    72271252
  • 批准年份:
    2022
  • 资助金额:
    44 万元
  • 项目类别:
    面上项目
构造型深部岩体动力灾害的孕育和发生全过程机理研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
盾构主轴承激光微造型协同相变硬化的抗疲劳机理及主动设计
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Breast Pre-Cancer Atlas Center
乳腺癌前期阿特拉斯中心
  • 批准号:
    10819754
  • 财政年份:
    2023
  • 资助金额:
    $ 2.55万
  • 项目类别:
Multiscale modeling of an inductive hair follicle microenvironment in engineered skin substitute
工程皮肤替代品中诱导毛囊微环境的多尺度建模
  • 批准号:
    10341124
  • 财政年份:
    2021
  • 资助金额:
    $ 2.55万
  • 项目类别:
Multiscale Models of Wound Cell Plasticity for Regeneration
伤口细胞再生可塑性的多尺度模型
  • 批准号:
    10289695
  • 财政年份:
    2021
  • 资助金额:
    $ 2.55万
  • 项目类别:
Multiscale modeling of the battle over iron in invasive lung infection
侵袭性肺部感染中铁之争的多尺度建模
  • 批准号:
    10213617
  • 财政年份:
    2020
  • 资助金额:
    $ 2.55万
  • 项目类别:
MODULUS: Integrative multiscale modeling and multimodal experiments to decode systems-level molecular mecanisms of epithelial systems
MODULUS:综合多尺度建模和多模态实验来解码上皮系统的系统级分子机制
  • 批准号:
    2029814
  • 财政年份:
    2020
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了