Multiscale Models of Wound Cell Plasticity for Regeneration
伤口细胞再生可塑性的多尺度模型
基本信息
- 批准号:10289695
- 负责人:
- 金额:$ 1.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressBiologicalBiological AssayBiological ProcessCell LineageCellsCicatrixClinicalCoculture TechniquesComplexDataDermalDestinationsDiseaseEmbryonic DevelopmentEpidermisEpithelialEventFutureGenesHairHair follicle structureHumanImmuneInjuryKnowledgeLightMemoryMethodologyMolecularMusNatural regenerationPhysiologicalPropertyProtocols documentationRegenerative MedicineRegenerative researchResearchRoleSignal TransductionSkinSolid NeoplasmSystemTestingTissue EngineeringTissue MicroarrayTissuesWorkWound modelscancer therapycell typecomputerized toolsdensityepithelial stem cellimprovedin vivoinjury and repairinsightmulti-scale modelingnovelpredictive modelingrecruitregenerativeregenerative therapyrestorationsimulationsingle cell analysissingle-cell RNA sequencingskin regenerationskin woundstemstem cellstissue regenerationtranscriptional reprogrammingtumorigenesiswoundwound healing
项目摘要
In regenerative medicine, it is critically important to understand the complex mechanisms that rewrite and
stably maintain cellular memory in order to reprogram cells to the new, desired destination fates. Wound
healing, involving critical biological processes at multiple spatial and temporal scales, provides an ideal system
for studying regenerative mechanisms. In skin, several distinct pools of epithelial stem cells, such as those in
the interfollicular epidermis and different parts of the hair follicle, become activated and recruited to repair the
wound. Importantly, large skin wounds can regenerate the normal array of tissue constituents, specifically new
hairs, while small wounds never can. We hypothesize that regeneration is an emerging property arising from
the optimal interplay between many biological events at multiple temporal and spatial scales including, but not
limited to, transcriptional reprogramming of migrating epidermal, dermal and immune cells, as well as signaling
crosstalk between these cells and their surrounding microenvironment. Here, we propose a novel multiscale
framework integrating multiple physiological systems (e.g. epidermal, dermal, and immune cells and hair
follicles) to identify critical conditions for shifting injury repair toward regeneration and away from scarring. The
proposed methodology addresses cutting-edge multiscale challenges in analyzing single-cell molecular data
and their connections with spatial dynamics in tissues. We will carry out three aims. In Aim 1, we will identify
regeneration-specific gene profile changes in epidermal, dermal, and immune cell in healing wounds; in Aim 2,
we will develop an integrative multiscale model to predict the relative roles and emergent dynamics of multiple
interacting cell types during wound healing; and in Aim 3, we will test model predictions using in-vivo murine
functional assays and ex vivo human co-culture; in combination with multiscale simulations and statistical
inference, we will thus be able to dissect the regenerative roles and spatial dynamics of candidate regulators.
The knowledge gained in this proposed work will help to develop future protocols for augmenting the
regeneration mechanisms in clinical settings to achieve robust human skin regeneration after any injury (small
or large) and with high efficiency (i.e. always achieve high density of regenerating hairs). The overall insights
learned will not only shed new light into skin research, but also establish a founding paradigm for other
epithelial systems. The novel computational tools for single-cell RNA-seq-driven cell lineage tracking, the
robust multiscale models for spatial dynamics of multiple cell lineages, and the overall integrative multiscale
framework of tissue regeneration will have broad applications, including for embryonic development, solid
tumors, and many other epithelial and even non-epithelial tissues. Given the importance of stem/progenitor
cells in regeneration and tumorigenesis, these studies will also have important implications for tissue
engineering and cancer treatment.
在再生医学中,了解重写和
稳定地维护细胞记忆,以便将细胞重新编程为新的,所需的目的地命运。伤口
康复,涉及多个空间和时间尺度上关键的生物过程,提供了理想的系统
用于研究再生机制。在皮肤中,几个不同的上皮干细胞池,例如
毛囊中的毛囊表皮和不同部位被激活并招募以修复
伤口。重要的是,大型皮肤伤口可以再生组织成分的正常阵列,特别是新的
头发,而小伤口永远无法。我们假设再生是由
许多时间和空间尺度上许多生物事件之间的最佳相互作用,包括但不包括
仅限于迁移表皮,皮肤和免疫细胞的转录重编程以及信号传导
这些细胞及其周围微环境之间的串扰。在这里,我们提出了一个新颖的多尺度
整合多个生理系统的框架(例如表皮,皮肤和免疫细胞和头发
卵泡)确定将伤害修复转向再生并远离疤痕的关键条件。这
提出的方法解决了分析单细胞分子数据的尖端多尺度挑战
以及它们与组织中空间动力学的连接。我们将执行三个目标。在AIM 1中,我们将确定
再生特异性基因谱在愈合伤口中表皮,皮肤和免疫细胞的变化;在AIM 2中,
我们将开发一个综合多尺度模型,以预测多重的相对作用和新兴动态
伤口愈合过程中相互作用的细胞类型;在AIM 3中,我们将使用体内鼠测试模型预测
功能测定和实体人类共同文化;结合多尺度模拟和统计
推断,我们将能够剖析候选调节剂的再生作用和空间动力学。
这项拟议的工作中获得的知识将有助于开发未来的协议来扩大
临床环境中的再生机制,以实现任何受伤后人类皮肤再生的强大(小)
或大效率(即始终达到高密度再生头发)。总体见解
学到的不仅会给皮肤研究带来新的光芒,还将为其他
上皮系统。单细胞RNA-seq驱动的细胞谱系跟踪的新型计算工具,
强大的多尺度模型,用于多个细胞谱系的空间动力学和整体综合多尺度
组织再生框架将具有广泛的应用,包括用于胚胎发育,固体
肿瘤以及许多其他上皮甚至非上皮组织。鉴于STEM/祖先的重要性
细胞在再生和肿瘤发生中,这些研究也将对组织具有重要意义
工程和癌症治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xing Dai其他文献
Xing Dai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xing Dai', 18)}}的其他基金
Intrinsic and extrinsic control of epithelial tissue stem cell activity
上皮组织干细胞活性的内在和外在控制
- 批准号:
10406792 - 财政年份:2022
- 资助金额:
$ 1.01万 - 项目类别:
Intrinsic and extrinsic control of epithelial tissue stem cell activity
上皮组织干细胞活性的内在和外在控制
- 批准号:
10615883 - 财政年份:2022
- 资助金额:
$ 1.01万 - 项目类别:
Multiscale Models of Wound Cell Plasticity for Regeneration
伤口细胞再生可塑性的多尺度模型
- 批准号:
10438606 - 财政年份:2018
- 资助金额:
$ 1.01万 - 项目类别:
Multiscale Models of Wound Cell Plasticity for Regeneration
伤口细胞再生可塑性的多尺度模型
- 批准号:
10210359 - 财政年份:2018
- 资助金额:
$ 1.01万 - 项目类别:
Multiscale Models of Wound Cell Plasticity for Regeneration
伤口细胞再生可塑性的多尺度模型
- 批准号:
10436537 - 财政年份:2018
- 资助金额:
$ 1.01万 - 项目类别:
Multiscale Models of Wound Cell Plasticity for Regeneration
伤口细胞再生可塑性的多尺度模型
- 批准号:
10654206 - 财政年份:2018
- 资助金额:
$ 1.01万 - 项目类别:
Mammary basal/stem cell plasticity and regulation
乳腺基底/干细胞可塑性和调节
- 批准号:
9557556 - 财政年份:2017
- 资助金额:
$ 1.01万 - 项目类别:
Mammary basal/stem cell plasticity and regulation
乳腺基底/干细胞可塑性和调节
- 批准号:
9895082 - 财政年份:2017
- 资助金额:
$ 1.01万 - 项目类别:
Control of epithelial plasticity and differentiation in hair follicle stem/progenitor cells
毛囊干/祖细胞上皮可塑性和分化的控制
- 批准号:
9293894 - 财政年份:2015
- 资助金额:
$ 1.01万 - 项目类别:
Chromatin Regulation of Epithelial Progenitor Cell Self-Renewal by Pygo2
Pygo2 对上皮祖细胞自我更新的染色质调节
- 批准号:
7895610 - 财政年份:2009
- 资助金额:
$ 1.01万 - 项目类别:
相似国自然基金
DGT原位测定全氟辛酸的生物污损效应及其影响机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
DGT原位测定全氟辛酸的生物污损效应及其影响机制研究
- 批准号:42207312
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
集成微流控芯片应用于高通量精准生物检体测定
- 批准号:
- 批准年份:2020
- 资助金额:60 万元
- 项目类别:面上项目
硫酸盐还原菌生物膜活性的原位快速测定研究
- 批准号:41876101
- 批准年份:2018
- 资助金额:62.0 万元
- 项目类别:面上项目
冬虫夏草抗菌肽的序列测定及其生物学功能研究
- 批准号:81803848
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 1.01万 - 项目类别:
Strategies for next-generation flavivirus vaccine development
下一代黄病毒疫苗开发策略
- 批准号:
10751480 - 财政年份:2024
- 资助金额:
$ 1.01万 - 项目类别:
Decoding AMPK-dependent regulation of DNA methylation in lung cancer
解码肺癌中 DNA 甲基化的 AMPK 依赖性调节
- 批准号:
10537799 - 财政年份:2023
- 资助金额:
$ 1.01万 - 项目类别:
Molecular basis of glycan recognition by T and B cells
T 和 B 细胞识别聚糖的分子基础
- 批准号:
10549648 - 财政年份:2023
- 资助金额:
$ 1.01万 - 项目类别: