Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals

小动物时域漫射光学断层成像重建算法

基本信息

  • 批准号:
    RGPIN-2015-05926
  • 负责人:
  • 金额:
    $ 1.82万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

This proposal is about the development of efficient computer programs (so-called algorithms) to obtain images in 3D of the interior of small laboratory animals (mice) used in biomedical research. The technique considered here for obtaining these images is diffuse optical tomography (DOT), a non-invasive medical imaging modality whereby non-ionizing light from a laser is used to illuminate an animal at several points on its skin. The light exiting the animal after its propagation through its body is measured (detected) at several positions again on its skin. The task of algorithms is to obtain from such surface measurements data a 3D image of the interior of the animal. For DOT, this is a difficult mathematical problem whose solution may take up to several hours on modern desktop computers before an image is obtained. Furthermore, a particularity of our work is that we resort to a detection technique, so-called time-domain optical measurements, that provides for information richer data. This has the potential of improving the spatial resolution of the images obtained and making them more quantitative, but since more data must be handled with such measurements, the computing time is further increased. Exploiting such data prompts for efficient numerical techniques to reduce the computational power needed by our algorithms. This proposal is about the development of such techniques that should lead to a decrease in computing times by an estimated factor of 10 to 100. This research is important because 3D pre-clinical imaging of small animals is a key tool in biomedical research that allows studying fundamental processes involved in disease development (cancer) and treatment (drug design, therapy assessment). This ultimately has impacts on the quality of treatments that can be offered to diseased patients, thus improving their quality of life and prognostics. The research program proposed here will provide end-users of DOT with faster feedback on their protocols which is important in their daily duties. Notably, optical imaging as developed here, allows studying processes that cannot be visualized with other medical imaging modalities, thus complementing these other modalities. The proposal will allow training 4 doctoral degree students along with initiating 5 bachelor’s degree students to research.
该建议是关于开发有效的计算机程序(所谓算法),以在生物医学研究中使用的小型实验室动物(小鼠)内部3D中获得图像。这里考虑的获取这些图像的技术是弥漫性光学断层扫描(DOT),这是一种非侵入性的医学成像方式,从激光器中非电离的光被用来在其皮肤上的几个点照亮动物。在动物传播其体内后,光在其皮肤上的多个位置再次测量(检测到)。算法的任务是从此类表面测量数据中获得动物内部的3D图像。对于DOT来说,这是一个困难的数学问题,在获得图像之前,该解决方案可能在现代台式计算机上最多需要几个小时。此外,我们工作的特殊性是我们求助于检测技术,即所谓的时间域光学测量,可提供更丰富的信息。这有可能改善获得的图像的空间分辨率并使它们更定量,但是由于必须通过此类测量来处理更多数据,因此计算时间进一步增加。利用此类数据提示有效的数值技术,以减少我们算法所需的计算能力。该提议是关于这种技术的发展,这些技术应导致计算时间减少估计的因子10至100。这项研究很重要,因为小动物的3D前临床前成像是生物医学研究中的关键工具,可以研究涉及疾病发育涉及的基本过程(癌症)和治疗,治疗,治疗,治疗评估)。最终,这对可以提供给患者的治疗质量产生了影响,从而改善了他们的生活质量和预后。此处提出的研究计划将为DOT的最终用户提供有关其协议的更快反馈,这对他们的日常职责很重要。值得注意的是,此处开发的光学成像允许研究无法使用其他医学成像方式可视化的过程,从而完成了这些其他方式。该提案将允许培训4个博士学位学生,并启动5个学士学位学生进行研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

BérubéLauzière, Yves其他文献

BérubéLauzière, Yves的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('BérubéLauzière, Yves', 18)}}的其他基金

Radiation propagation modelling and image reconstruction for X-ray time-of-flight computed tomography
X 射线飞行时间计算机断层扫描的辐射传播建模和图像重建
  • 批准号:
    RGPIN-2021-03858
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Radiation propagation modelling and image reconstruction for X-ray time-of-flight computed tomography
X 射线飞行时间计算机断层扫描的辐射传播建模和图像重建
  • 批准号:
    RGPAS-2021-00039
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Radiation propagation modelling and image reconstruction for X-ray time-of-flight computed tomography
X 射线飞行时间计算机断层扫描的辐射传播建模和图像重建
  • 批准号:
    RGPIN-2021-03858
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Radiation propagation modelling and image reconstruction for X-ray time-of-flight computed tomography
X 射线飞行时间计算机断层扫描的辐射传播建模和图像重建
  • 批准号:
    RGPAS-2021-00039
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
QSciTech: Bridging the Gap between Quantum Science and Quantum Technologies - Training the Next Generation of Quantum Scientists, Engineers and Entrepreneurs
QSciTech:弥合量子科学和量子技术之间的差距 - 培训下一代量子科学家、工程师和企业家
  • 批准号:
    511602-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative Research and Training Experience
QSciTech: Bridging the Gap between Quantum Science and Quantum Technologies - Training the Next Generation of Quantum Scientists, Engineers and Entrepreneurs
QSciTech:弥合量子科学和量子技术之间的差距 - 培训下一代量子科学家、工程师和企业家
  • 批准号:
    511602-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative Research and Training Experience
QSciTech: Bridging the Gap between Quantum Science and Quantum Technologies - Training the Next Generation of Quantum Scientists, Engineers and Entrepreneurs
QSciTech:弥合量子科学和量子技术之间的差距 - 培训下一代量子科学家、工程师和企业家
  • 批准号:
    511602-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative Research and Training Experience
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
  • 批准号:
    RGPIN-2015-05926
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
  • 批准号:
    RGPIN-2015-05926
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
QSciTech: Bridging the Gap between Quantum Science and Quantum Technologies - Training the Next Generation of Quantum Scientists, Engineers and Entrepreneurs
QSciTech:弥合量子科学和量子技术之间的差距 - 培训下一代量子科学家、工程师和企业家
  • 批准号:
    511602-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative Research and Training Experience

相似国自然基金

基于超图的装填与覆盖问题的多项式时间可解性及近似算法设计研究
  • 批准号:
    12361065
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目
三因素学习规则下奖励调制脉冲时间依赖可塑性算法硬件协同设计研究
  • 批准号:
    62304203
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于事件触发的固定时间分布式优化算法研究及应用
  • 批准号:
    12301652
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
时间假设平衡的区块链共识算法研究
  • 批准号:
    62372293
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
非定常金兹堡-朗道方程的时间高阶全离散算法
  • 批准号:
    12301523
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

A data science framework for transforming electronic health records into real-world evidence
将电子健康记录转化为现实世界证据的数据科学框架
  • 批准号:
    10664706
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
High-resolution cerebral microvascular imaging for characterizing vascular dysfunction in Alzheimer's disease mouse model
高分辨率脑微血管成像用于表征阿尔茨海默病小鼠模型的血管功能障碍
  • 批准号:
    10848559
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
GPU-based SPECT Reconstruction Using Reverse Monte Carlo Simulations
使用反向蒙特卡罗模拟进行基于 GPU 的 SPECT 重建
  • 批准号:
    10740079
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
Machine Learning with Scintillation Photon Counting Detectors to Advance PET Imaging Performance
利用闪烁光子计数探测器进行机器学习以提高 PET 成像性能
  • 批准号:
    10742435
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
A fast CTOT for mapping whole brain hemodynamic activity in infants
用于绘制婴儿全脑血流动力学活动的快速 CTOT
  • 批准号:
    10591932
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了