Extreme Events and Optimal Closures in Fluid Mechanics

流体力学中的极端事件和最佳闭合

基本信息

  • 批准号:
    RGPIN-2014-04400
  • 负责人:
  • 金额:
    $ 2.48万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

This application seeks funding for Dr. Protas' ongoing research program which will offer a new perspective on a number of classical and emerging fundamental problems in the area of theoretical fluid dynamics. By performing carefully designed and executed numerical computations we will shed light on how well the rigorous mathematical analysis can describe actual flow behaviours. We will also develop optimal ways of simplifying the mathematical description of complex fluid flows.The first class of open questions we will investigate addresses forms of extreme behavior possible in flows of incompressible fluids. Such "extreme behavior" may concern the spontaneous growth of energy-like quantities characterizing the flow structure and might potentially manifest itself in the formation of singularities in finite time. Related questions arise, for instance, in the characterization of the maximum possible mixing of passive scalars or convective heat transfer. In addition to assessing the fundamental performance limitations of various flow processes in science and engineering, these issues are in the first place relevant for our basic understanding of how the mathematical models of fluid flow behave. An example of such a question is one of the Clay Institute's "Millennium Problems" for the mathematical community concerning the well-posedness of the Navier-Stokes system in 3D which remains notoriously unresolved. The ultimate goal of the proposed research program is to determine systematically, via a suitable process of numerical optimization, smooth Navier-Stokes flows in 3D exhibiting a worst-case behavior in order to understand whether such behavior may be compatible with singularity formation in finite time. As intermediate objectives, we will address analogous questions for a range of related simplified flow models in which such singular behavior is known, or suspected, to exist. These results will provide key new insights about the sharpness of the mathematical analysis and the properties of mathematical fluid models with ubiquitous applications, bridging in this way mathematical analysis with large-scale scientific computations.The second class of open problems is motivated by the development of reduced-order models for turbulent flows. Given the multiscale complexity exhibited by such flows, their complete resolution in numerical computations will always be a challenge and some form of approximation is needed to represent unresolved dynamics. Although such problems have been studied for a long time, almost all of the work has been based on purely empirical approaches. Mathematically optimal solutions to this so-called "closure problem" are the second major open question we will address. In addition to offering an entirely new way to design such closure strategies, our work will also answer questions about the fundamental performance limitations of these approaches.A common theme in this proposed research effort is that these different questions will be framed in terms of variational optimization problems amenable to solutions using modern methods of numerical optimization. During this project we will offer uniquely broad interdisciplinary training to a large number of trainees at different levels. It will span applied analysis and large-scale scientific computation, and will be combined with applied fields such as fluid mechanics and model reduction.
该申请为 Protas 博士正在进行的研究项目寻求资助,该项目将为理论流体动力学领域的许多经典和新兴基本问题提供新的视角。通过进行精心设计和执行的数值计算,我们将揭示严格的数学分析如何能够很好地描述实际的流动行为。我们还将开发简化复杂流体流动数学描述的最佳方法。我们将研究的第一类开放问题解决不可压缩流体流动中可能出现的极端行为形式。这种“极端行为”可能涉及表征流动结构的类能量量的自发增长,并且可能在有限时间内以奇点的形成形式表现出来。例如,在表征被动标量或对流传热的最大可能混合时会出现相关问题。除了评估科学和工程中各种流动过程的基本性能限制之外,这些问题首先与我们对流体流动数学模型如何表现的基本理解相关。此类问题的一个例子是克莱研究所为数学界提出的“千年问题”之一,该问题涉及 3D 纳维-斯托克斯系统的适定性,但众所周知,该问题仍未得到解决。所提出的研究计划的最终目标是通过适当的数值优化过程系统地确定 3D 中表现出最坏情况行为的平滑纳维-斯托克斯流,以便了解这种行为是否与有限时间内的奇点形成兼容。作为中间目标,我们将解决一系列相关简化流模型的类似问题,其中已知或怀疑存在这种奇异行为。这些结果将为数学分析的敏锐度和数学流体模型的属性提供关键的新见解,并具有普遍的应用,从而将数学分析与大规模科学计算联系起来。第二类开放问题是由湍流的降阶模型。考虑到此类流动所表现出的多尺度复杂性,它们在数值计算中的完全解析始终是一个挑战,并且需要某种形式的近似来表示未解析的动力学。尽管这些问题已经被研究了很长时间,但几乎所有的工作都是基于纯粹的经验方法。这个所谓的“封闭问题”的数学最优解决方案是我们要解决的第二个主要开放问题。除了提供一种全新的方法来设计此类闭合策略之外,我们的工作还将回答有关这些方法的基本性能限制的问题。这项拟议研究工作的一个共同主题是,这些不同的问题将根据变分优化来构建适合使用现代数值优化方法解决的问题。在这个项目期间,我们将为大量不同级别的学员提供独特、广泛的跨学科培训。它将跨越应用分析和大规模科学计算,并将与流体力学和模型简化等应用领域相结合。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Protas, Bartosz其他文献

Extreme vortex states and the growth of enstrophy in three-dimensional in compressible flows
  • DOI:
    10.1017/jfm.2017.136
  • 发表时间:
    2017-05-10
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Ayala, Diego;Protas, Bartosz
  • 通讯作者:
    Protas, Bartosz
Maximum palinstrophy growth in 2D incompressible flows
  • DOI:
    10.1017/jfm.2013.685
  • 发表时间:
    2014-03-01
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Ayala, Diego;Protas, Bartosz
  • 通讯作者:
    Protas, Bartosz

Protas, Bartosz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Protas, Bartosz', 18)}}的其他基金

Topics in Vortex Dynamics: Extreme Events, Optimal Closures and New Equilibrium Solutions
涡动力学主题:极端事件、最优闭合和新的平衡解
  • 批准号:
    RGPIN-2020-05710
  • 财政年份:
    2022
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Topics in Vortex Dynamics: Extreme Events, Optimal Closures and New Equilibrium Solutions
涡动力学主题:极端事件、最优闭合和新的平衡解
  • 批准号:
    RGPIN-2020-05710
  • 财政年份:
    2022
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Topics in Vortex Dynamics: Extreme Events, Optimal Closures and New Equilibrium Solutions
涡动力学主题:极端事件、最优闭合和新的平衡解
  • 批准号:
    RGPIN-2020-05710
  • 财政年份:
    2021
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Topics in Vortex Dynamics: Extreme Events, Optimal Closures and New Equilibrium Solutions
涡动力学主题:极端事件、最优闭合和新的平衡解
  • 批准号:
    RGPIN-2020-05710
  • 财政年份:
    2021
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Topics in Vortex Dynamics: Extreme Events, Optimal Closures and New Equilibrium Solutions
涡动力学主题:极端事件、最优闭合和新的平衡解
  • 批准号:
    RGPIN-2020-05710
  • 财政年份:
    2020
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Topics in Vortex Dynamics: Extreme Events, Optimal Closures and New Equilibrium Solutions
涡动力学主题:极端事件、最优闭合和新的平衡解
  • 批准号:
    RGPIN-2020-05710
  • 财政年份:
    2020
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Extreme Events and Optimal Closures in Fluid Mechanics
流体力学中的极端事件和最佳闭合
  • 批准号:
    RGPIN-2014-04400
  • 财政年份:
    2019
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Extreme Events and Optimal Closures in Fluid Mechanics
流体力学中的极端事件和最佳闭合
  • 批准号:
    RGPIN-2014-04400
  • 财政年份:
    2019
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Extreme Events and Optimal Closures in Fluid Mechanics
流体力学中的极端事件和最佳闭合
  • 批准号:
    RGPIN-2014-04400
  • 财政年份:
    2016
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Extreme Events and Optimal Closures in Fluid Mechanics
流体力学中的极端事件和最佳闭合
  • 批准号:
    RGPIN-2014-04400
  • 财政年份:
    2016
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

面向要素流动的城市群居民活动空间边界识别、机理与测度研究:以粤港澳大湾区为例
  • 批准号:
    42371202
  • 批准年份:
    2023
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目
火山活动的分子地球化学响应与有机质富集机制——以上寺剖面大隆组为例
  • 批准号:
    42302189
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
克拉通内走滑断裂带分段活动及油气差异富集机理——以塔里木盆地顺北地区为例
  • 批准号:
    42372158
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
草原土地利用活动探测及其与草原承载力的关系——以锡林郭勒典型温性草原为例
  • 批准号:
    42371304
  • 批准年份:
    2023
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目
中–晚二叠世之交火山活动与环境变化:汞同位素与原位微区硫同位素联合制约
  • 批准号:
    42377205
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Topics in Vortex Dynamics: Extreme Events, Optimal Closures and New Equilibrium Solutions
涡动力学主题:极端事件、最优闭合和新的平衡解
  • 批准号:
    RGPIN-2020-05710
  • 财政年份:
    2022
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Topics in Vortex Dynamics: Extreme Events, Optimal Closures and New Equilibrium Solutions
涡动力学主题:极端事件、最优闭合和新的平衡解
  • 批准号:
    RGPIN-2020-05710
  • 财政年份:
    2022
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Discomfort Evaluation under Extreme Events: Impact on Optimal Design of Resilient Buildings
极端事件下的不适评估:对弹性建筑优化设计的影响
  • 批准号:
    546188-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Postdoctoral Fellowships
Topics in Vortex Dynamics: Extreme Events, Optimal Closures and New Equilibrium Solutions
涡动力学主题:极端事件、最优闭合和新的平衡解
  • 批准号:
    RGPIN-2020-05710
  • 财政年份:
    2021
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Discomfort Evaluation under Extreme Events: Impact on Optimal Design of Resilient Buildings
极端事件下的不适评估:对弹性建筑优化设计的影响
  • 批准号:
    546188-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Postdoctoral Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了