Delay differential equations: theory and applications of periodicity, multistability and global dynamics
时滞微分方程:周期性、多稳定性和全局动力学的理论和应用
基本信息
- 批准号:105588-2011
- 负责人:
- 金额:$ 3.42万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A delay differential equation (DDE) describes the evolution of a system, for which the change rate of the state variable depends on the system's current and historical status. The initial state must be specified on an (initial) interval and an appropriate phase space must be infinite dimensional. This infinite dimensional functional analytic framework was developed in the last century, and the qualitative study of DDEs has been among major sources of inspiration for advance in nonlinear analysis and infinite dimensional dynamical systems. The objective of this proposal is to describe the global dynamics (how local structures such as equilibria, periodic/quasi-periodic solutions are connected together to form the global attractor) for several classes of nonlinear systems of DDEs arising from important applications including spatial dynamics of migratory birds and avian influenza; transmission dynamics of vector-borne diseases such as West Nile virus and Lyme disease; and neural networks for pattern storage and recognition. This project is the core component of a more comprehensive research program to understand long-term behaviors of biological or epidemiological systems with highly heterogenous individual/community structures. This core component focuses on developing general mathematical theories, methodologies and techniques to explore the implication of structure heterogeneity including environment/climate change for the spatiotemporal patterns of population dynamics. The heterogeneity to be addressed involve both temporal and spatial variations, including seasonality, long range dispersal vs local spatial diffusion, physiological structures and maturation stages, and state-dependent delays in signal processing and feedbacks. This project is an important step towards the long-term objective to understand the joint effect of time delay and spatial diffusion on dynamics of nonlinear systems, and its implications for a wide range of issues in biology, epidemiology, neuroscience and data mining. This project will provide ample opportunities for thesis topics and postdoctoral research, and NSERC support will be critical to form a well structured project team to fully capitalize a network of complementary expertise.
时滞微分方程(DDE)描述系统的演化,其中状态变量的变化率取决于系统的当前和历史状态。初始状态必须在(初始)间隔上指定,并且适当的相空间必须是无限维的。这种无限维泛函分析框架是在上个世纪开发的,DDE 的定性研究一直是非线性分析和无限维动力系统进步的主要灵感来源之一。该提案的目的是描述 DDE 的几类非线性系统的全局动力学(局部结构,如平衡、周期/准周期解如何连接在一起形成全局吸引子),这些系统产生于重要的应用,包括空间动力学候鸟和禽流感;西尼罗河病毒和莱姆病等媒介传播疾病的传播动态;以及用于模式存储和识别的神经网络。该项目是一个更全面的研究计划的核心组成部分,旨在了解具有高度异质性个人/社区结构的生物或流行病学系统的长期行为。该核心部分侧重于发展通用数学理论、方法和技术,以探索结构异质性(包括环境/气候变化)对种群动态时空模式的影响。要解决的异质性涉及时间和空间变化,包括季节性、远距离扩散与局部空间扩散、生理结构和成熟阶段,以及信号处理和反馈中的状态相关延迟。该项目是朝着了解时间延迟和空间扩散对非线性系统动力学的共同影响及其对生物学、流行病学、神经科学和数据挖掘等广泛问题的影响的长期目标迈出的重要一步。该项目将为论文主题和博士后研究提供充足的机会,NSERC 的支持对于组建结构良好的项目团队以充分利用互补的专业知识网络至关重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wu, Jianhong其他文献
Development and validation of a machine learning-derived radiomics model for diagnosis of osteoporosis and osteopenia using quantitative computed tomography.
- DOI:
10.1186/s12880-022-00868-5 - 发表时间:
2022-08-08 - 期刊:
- 影响因子:2.7
- 作者:
Xie, Qianrong;Chen, Yue;Hu, Yimei;Zeng, Fanwei;Wang, Pingxi;Xu, Lin;Wu, Jianhong;Li, Jie;Zhu, Jing;Xiang, Ming;Zeng, Fanxin - 通讯作者:
Zeng, Fanxin
Drosophila homologue of the Rothmund-Thomson syndrome gene: essential function in DNA replication during development.
- DOI:
10.1016/j.ydbio.2008.08.006 - 发表时间:
2008-11-01 - 期刊:
- 影响因子:2.7
- 作者:
Wu, Jianhong;Capp, Christopher;Feng, Liping;Hsieh, Tao-shih - 通讯作者:
Hsieh, Tao-shih
Impact of variability of reproductive ageing and rate on childhood infectious disease prevention and control: insights from stage-structured population models
- DOI:
10.3934/mbe.2020390 - 发表时间:
2020-01-01 - 期刊:
- 影响因子:2.6
- 作者:
Su, Qiuyi;Wu, Jianhong - 通讯作者:
Wu, Jianhong
The potential impact of climate change on the transmission risk of tick-borne encephalitis in Hungary
- DOI:
10.1186/s12879-019-4734-4 - 发表时间:
2020-01-13 - 期刊:
- 影响因子:3.7
- 作者:
Nah, Kyeongah;Bede-Fazekas, Akos;Wu, Jianhong - 通讯作者:
Wu, Jianhong
Entire solutions in monostable reaction-diffusion equations with delayed nonlinearity
具有延迟非线性的单稳态反应扩散方程的全解
- DOI:
10.1016/j.jde.2008.03.023 - 发表时间:
2008-07-01 - 期刊:
- 影响因子:2.4
- 作者:
Li, Wan-Tong;Wang, Zhi-Cheng;Wu, Jianhong - 通讯作者:
Wu, Jianhong
Wu, Jianhong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wu, Jianhong', 18)}}的其他基金
Industrial and Applied Mathematics
工业与应用数学
- 批准号:
CRC-2014-00132 - 财政年份:2022
- 资助金额:
$ 3.42万 - 项目类别:
Canada Research Chairs
Global Dynamics of Delay Differential Systems Modelling Nonlinear Feedbacks in Spatiotemporally Varying Environments
时空变化环境中非线性反馈建模的时滞微分系统的全局动力学
- 批准号:
RGPIN-2019-06698 - 财政年份:2022
- 资助金额:
$ 3.42万 - 项目类别:
Discovery Grants Program - Individual
NSERC/Sanofi Industrial Research Chair in vaccine mathematics, modelling and manufacturing
NSERC/赛诺菲疫苗数学、建模和制造工业研究主席
- 批准号:
517504-2017 - 财政年份:2021
- 资助金额:
$ 3.42万 - 项目类别:
Industrial Research Chairs
Global Dynamics of Delay Differential Systems Modelling Nonlinear Feedbacks in Spatiotemporally Varying Environments
时空变化环境中非线性反馈建模的时滞微分系统的全局动力学
- 批准号:
RGPIN-2019-06698 - 财政年份:2021
- 资助金额:
$ 3.42万 - 项目类别:
Discovery Grants Program - Individual
Industrial And Applied Mathematics
工业与应用数学
- 批准号:
CRC-2014-00132 - 财政年份:2021
- 资助金额:
$ 3.42万 - 项目类别:
Canada Research Chairs
NSERC/Sanofi Industrial Research Chair in vaccine mathematics, modelling and manufacturing
NSERC/赛诺菲疫苗数学、建模和制造工业研究主席
- 批准号:
517504-2017 - 财政年份:2020
- 资助金额:
$ 3.42万 - 项目类别:
Industrial Research Chairs
Global Dynamics of Delay Differential Systems Modelling Nonlinear Feedbacks in Spatiotemporally Varying Environments
时空变化环境中非线性反馈建模的时滞微分系统的全局动力学
- 批准号:
RGPIN-2019-06698 - 财政年份:2020
- 资助金额:
$ 3.42万 - 项目类别:
Discovery Grants Program - Individual
Industrial and Applied Mathematics
工业与应用数学
- 批准号:
CRC-2014-00132 - 财政年份:2020
- 资助金额:
$ 3.42万 - 项目类别:
Canada Research Chairs
Industrial and Applied Mathematics
工业与应用数学
- 批准号:
CRC-2014-00132 - 财政年份:2019
- 资助金额:
$ 3.42万 - 项目类别:
Canada Research Chairs
Global Dynamics of Delay Differential Systems Modelling Nonlinear Feedbacks in Spatiotemporally Varying Environments
时空变化环境中非线性反馈建模的时滞微分系统的全局动力学
- 批准号:
RGPIN-2019-06698 - 财政年份:2019
- 资助金额:
$ 3.42万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
随机延迟微分方程的遍历数值方法
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非线性奇异延迟微分方程的块边值方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
二阶延迟微分方程的高效数值算法研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
几类随机微分方程及随机延迟微分方程数值分析
- 批准号:
- 批准年份:2020
- 资助金额:51 万元
- 项目类别:面上项目
几类延迟微分方程保振动性算法的研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
相似海外基金
確率最適制御における保険会社の期待効用最大化問題の新展開
保险公司随机最优控制期望效用最大化问题的新进展
- 批准号:
20K11690 - 财政年份:2020
- 资助金额:
$ 3.42万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Numerical Methods for Distributed Delay Differential Equations
分布时滞微分方程的数值方法
- 批准号:
539289-2019 - 财政年份:2019
- 资助金额:
$ 3.42万 - 项目类别:
University Undergraduate Student Research Awards
The effect of delay on the asymptotic properties of solutions of difference equations
时滞对差分方程解渐近性质的影响
- 批准号:
19K03524 - 财政年份:2019
- 资助金额:
$ 3.42万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Delay differential equations: theory and applications of periodicity, multistability and global dynamics
时滞微分方程:周期性、多稳定性和全局动力学的理论和应用
- 批准号:
105588-2011 - 财政年份:2018
- 资助金额:
$ 3.42万 - 项目类别:
Discovery Grants Program - Individual
Dynamics and Numerical Analysis of State Dependent Delay Differential Equations
状态相关时滞微分方程的动力学和数值分析
- 批准号:
261389-2013 - 财政年份:2017
- 资助金额:
$ 3.42万 - 项目类别:
Discovery Grants Program - Individual