Dynamics and Numerical Analysis of State Dependent Delay Differential Equations

状态相关时滞微分方程的动力学和数值分析

基本信息

  • 批准号:
    261389-2013
  • 负责人:
  • 金额:
    $ 1.09万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

Many processes are modelled by differential equations subject to delays. In most models and mathematical theory this time delay is fixed, but in application areas there is much evidence of variable delays which depend on the state of the system. For example, the human hematopoietic system matures white blood cells faster when when mature cell counts are low. However, state dependency is often suppressed when deriving mathematical models of such processes, because of the paucity of the mathematical theory for state-dependent delay differential equations. Extension of the well-established theory and techniques for fixed delays to the state-dependent realm is currently receiving much attention, and the research program detailed here forms a part of this effort. In my research I will tackle state-dependent delay differential equations (DDEs) from three perspectives. Firstly I will study a model problem whose only nonlinearity is the state-dependency of the delays to understand the dynamics that state-dependency alone can drive. This will involve studying dynamics of and on invariant tori in state-dependent DDEs. Secondly, I will study numerical analysis of state-dependent DDEs, including derivation and implementation of new continuous Runge-Kutta methods and stability issues for state-dependent DDEs, as well as numerical techniques relevant to the invariant torus example. Thirdly I will consider state-dependent DDEs arising in applications including a human hematopoietic system model and Wheeler-Feynman electrodynamics. The techniques derived in the model problem and the numerical analysis will be used to further understanding of the application models, but it is also expected that applications will give rise to new mathematical questions.
许多过程都是通过存在延迟的微分方程来建模的。在大多数模型和数学理论中,这个时间延迟是固定的,但在应用领域,有很多证据表明可变延迟取决于系统的状态。例如,当成熟细胞计数较低时,人类造血系统使白细胞成熟得更快。然而,由于状态相关时滞微分方程的数学理论匮乏,在推导此类过程的数学模型时,状态依赖性常常受到抑制。将固定延迟的完善理论和技术扩展到状态相关领域目前受到广泛关注,这里详细介绍的研究计划构成了这项工作的一部分。在我的研究中,我将从三个角度解决状态相关的延迟微分方程(DDE)。首先,我将研究一个模型问题,其唯一的非线性是延迟的状态依赖性,以了解仅状态依赖性可以驱动的动态。这将涉及研究状态相关 DDE 中不变环面的动力学。其次,我将研究状态相关 DDE 的数值分析,包括新的连续龙格-库塔方法的推导和实现以及状态相关 DDE 的稳定性问题,以及与不变环面示例相关的数值技术。第三,我将考虑在人类造血系统模型和惠勒-费曼电动力学等应用中出现的状态相关 DDE。模型问题和数值分析中衍生的技术将用于进一步理解应用模型,但也预计应用将产生新的数学问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Humphries, Antony其他文献

Humphries, Antony的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Humphries, Antony', 18)}}的其他基金

Mathematical modelling of human hematopoiesis
人类造血的数学模型
  • 批准号:
    RGPIN-2018-05062
  • 财政年份:
    2022
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical modelling of human hematopoiesis
人类造血的数学模型
  • 批准号:
    RGPIN-2018-05062
  • 财政年份:
    2021
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical modelling of human hematopoiesis
人类造血的数学模型
  • 批准号:
    RGPIN-2018-05062
  • 财政年份:
    2020
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical modelling of human hematopoiesis
人类造血的数学模型
  • 批准号:
    RGPIN-2018-05062
  • 财政年份:
    2019
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical modelling of human hematopoiesis
人类造血的数学模型
  • 批准号:
    RGPIN-2018-05062
  • 财政年份:
    2018
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamics and Numerical Analysis of State Dependent Delay Differential Equations
状态相关时滞微分方程的动力学和数值分析
  • 批准号:
    261389-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamics and Numerical Analysis of State Dependent Delay Differential Equations
状态相关时滞微分方程的动力学和数值分析
  • 批准号:
    261389-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamics and Numerical Analysis of State Dependent Delay Differential Equations
状态相关时滞微分方程的动力学和数值分析
  • 批准号:
    261389-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamics and Numerical Analysis of State Dependent Delay Differential Equations
状态相关时滞微分方程的动力学和数值分析
  • 批准号:
    261389-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis and computation of state-dependant retarded & advanced-retarded differential boundry value problems
状态相关延迟的分析与计算
  • 批准号:
    261389-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

自养/异养条件下单细胞藻类的絮凝/降解/收集问题驱动的动力学建模与理论和数值分析
  • 批准号:
    12371481
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
加筋板结构低温撞击损伤机理与非常规态基近场动力学数值分析研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
动脉血流中非线性波传播的流固耦合模型的动力学分析及数值计算
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
软土场地盾构隧道纵向地震反应特性与损伤机理研究
  • 批准号:
    51908237
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于异质性的肿瘤免疫系统动力学研究
  • 批准号:
    11901225
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Coupled analysis of measurement using 3D CT and numerical simulation for iron ore high temperature complex dynamic behavior
铁矿石高温复杂动态行为3D CT测量与数值模拟耦合分析
  • 批准号:
    23K17810
  • 财政年份:
    2023
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Numerical analysis of interfacial fluid dynamics with Korteweg effect in partially miscible systems
部分混相体系中具有 Korteweg 效应的界面流体动力学数值分析
  • 批准号:
    19K04189
  • 财政年份:
    2019
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical and numerical analysis of interfacial dynamics arising in population models
群体模型中出现的界面动力学的数学和数值分析
  • 批准号:
    18K03412
  • 财政年份:
    2018
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Numerical analysis of turbulent superstructures in thermal convection: Long-term dynamics by Lagrangian clustering and Markov state modeling
热对流中湍流上层结构的数值分析:通过拉格朗日聚类和马尔可夫状态建模进行长期动力学
  • 批准号:
    315181729
  • 财政年份:
    2016
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Priority Programmes
Numerical analysis for support splitting and merging phenomena appearing in the interfacial dynamics
界面动力学中出现的支撑分裂和合并现象的数值分析
  • 批准号:
    16K05271
  • 财政年份:
    2016
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了