Low Dimensional Quantum Gases: Resonance, Quantum magnetism and Non-Abelian vortices
低维量子气体:共振、量子磁性和非阿贝尔涡旋
基本信息
- 批准号:288179-2013
- 负责人:
- 金额:$ 2.4万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Quantum many-body systems in 2D can exhibit surprising features and unique correlations that otherwise do not exist in 3D. The best known example is perhaps fractional quantum hall states where excitations carry a fraction of electron charge. 2D Quantum gases are another example.This proposal focuses on 2D quantum gases with strong emphases on near-resonance physics, interplay between quantum magnetism in optical lattices and Feshbach resonances, and the hydrodynamics of non-Abelian vortices and non-Abelian gauge fields in 2D superfluids. Experimentally, near-resonance 2D quantum gases can be realized by combining optical confinement and Feshbach resonance. Theoretically, we plan to explore the interplay between few- and many-body physics in 2D, especially three-body correlations and the many-body effects on few-body clusters which can be studied in the loss spectroscopy. The other direction we are going to pursue is on quantum magnetism via Feshbach resonance; we suggest a proposal of studying quantum magnetism by combining Feshbach resonances and optical lattices to dramatically increase the range of temperatures within which magnetic ordering and phase transitions can be studied. The last direction is about low dimension spin correlated quantum gases; we plan to study the hydrodynamics of non-Abelian vortices in 2D gases, artificial non-Abelian gauge fields and dynamic generation of vortices in rotating quasi 2D traps.
2D 量子多体系统可以表现出 3D 中不存在的令人惊讶的特征和独特的相关性。最著名的例子可能是分数量子霍尔态,其中激发携带一小部分电子电荷。二维量子气体是另一个例子。该提案重点关注二维量子气体,重点关注近共振物理、光学晶格中的量子磁性和费什巴赫共振之间的相互作用,以及二维中非阿贝尔涡旋和非阿贝尔规范场的流体动力学超流体。实验上,近共振二维量子气体可以通过结合光限制和费什巴赫共振来实现。理论上,我们计划探索二维中少体和多体物理之间的相互作用,特别是三体相关性和多体对少体簇的影响,这可以在损失光谱中研究。我们要追求的另一个方向是通过费什巴赫共振研究量子磁性;我们建议通过结合费什巴赫共振和光学晶格来研究量子磁性,以显着增加可以研究磁有序和相变的温度范围。最后一个方向是低维自旋相关量子气体;我们计划研究二维气体中非阿贝尔涡旋的流体动力学、人工非阿贝尔规范场以及旋转准二维陷阱中涡旋的动态生成。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhou, Fei其他文献
A Selective Review of Multi-Level Omics Data Integration Using Variable Selection.
使用变量选择的多级组学数据集成的选择性审查。
- DOI:
- 发表时间:
2019-01-18 - 期刊:
- 影响因子:0
- 作者:
Wu, Cen;Zhou, Fei;Ren, Jie;Li, Xiaoxi;Jiang, Yu;Ma, Shuangge - 通讯作者:
Ma, Shuangge
Structures of the Multidrug Transporter P-glycoprotein Reveal Asymmetric ATP Binding and the Mechanism of Polyspecificity.
多药转运蛋白 P-糖蛋白的结构揭示了不对称 ATP 结合和多特异性机制。
- DOI:
- 发表时间:
2017-01-13 - 期刊:
- 影响因子:0
- 作者:
Esser, Lothar;Zhou, Fei;Pluchino, Kristen M;Shiloach, Joseph;Ma, Jichun;Tang, Wai;Gutierrez, Camilo;Zhang, Ale;Shukla, Suneet;Madigan, James P;Zhou, Tongqing;Kwong, Peter D;Ambudkar, Suresh V;Gottesman, Michael M;Xia, Di - 通讯作者:
Xia, Di
Establishment and characterization of three stable Basal/HER2-positive breast cancer cell lines derived from Chinese breast carcinoma with identical missense mutations in the DNA-binding domain of TP53.
三种稳定的 Basal/HER2 阳性乳腺癌细胞系的建立和表征,这些细胞系源自中国乳腺癌,在 TP53 DNA 结合域中具有相同的错义突变。
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:5.8
- 作者:
Zhou, Fei;Zhang, Yanhua;Xu, Xiufang;Luo, Jingfeng;Yang, Fang;Wang, Linbo;Xie, Shuduo;Sun, Jihong;Yang, Xiaoming - 通讯作者:
Yang, Xiaoming
Efficient synthesis of 3H-indoles enabled by the lead-mediated α-arylation of β-ketoesters or γ-lactams using aryl azides.
使用芳基叠氮化物通过铅介导的β-酮酯或γ-内酰胺的α-芳基化实现3H-吲哚的高效合成。
- DOI:
- 发表时间:
2014-06-06 - 期刊:
- 影响因子:5.2
- 作者:
Zhou, Fei;Driver, Tom G - 通讯作者:
Driver, Tom G
Structural basis for the requirement of two phosphotyrosine residues in signaling mediated by Syk tyrosine kinase.
Syk 酪氨酸激酶介导的信号传导需要两个磷酸酪氨酸残基的结构基础。
- DOI:
- 发表时间:
2006-03-10 - 期刊:
- 影响因子:5.6
- 作者:
Groesch, Teresa D;Zhou, Fei;Mattila, Sampo;Geahlen, Robert L;Post, Carol Beth - 通讯作者:
Post, Carol Beth
Zhou, Fei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhou, Fei', 18)}}的其他基金
Quantum transport and hydrodynamics in strongly interacting systems: Symmetries, Quantum criticality and Entanglement
强相互作用系统中的量子输运和流体动力学:对称性、量子临界性和纠缠
- 批准号:
RGPIN-2020-07070 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Quantum transport and hydrodynamics in strongly interacting systems: Symmetries, Quantum criticality and Entanglement
强相互作用系统中的量子输运和流体动力学:对称性、量子临界性和纠缠
- 批准号:
RGPIN-2020-07070 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Quantum transport and hydrodynamics in strongly interacting systems: Symmetries, Quantum criticality and Entanglement
强相互作用系统中的量子输运和流体动力学:对称性、量子临界性和纠缠
- 批准号:
RGPIN-2020-07070 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Quantum transport and hydrodynamics in strongly interacting systems: Symmetries, Quantum criticality and Entanglement
强相互作用系统中的量子输运和流体动力学:对称性、量子临界性和纠缠
- 批准号:
RGPIN-2020-07070 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Quantum transport and hydrodynamics in strongly interacting systems: Symmetries, Quantum criticality and Entanglement
强相互作用系统中的量子输运和流体动力学:对称性、量子临界性和纠缠
- 批准号:
RGPIN-2020-07070 - 财政年份:2020
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Quantum transport and hydrodynamics in strongly interacting systems: Symmetries, Quantum criticality and Entanglement
强相互作用系统中的量子输运和流体动力学:对称性、量子临界性和纠缠
- 批准号:
RGPIN-2020-07070 - 财政年份:2020
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Low Dimensional Quantum Gases: Resonance, Quantum magnetism and Non-Abelian vortices
低维量子气体:共振、量子磁性和非阿贝尔涡旋
- 批准号:
288179-2013 - 财政年份:2016
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Low Dimensional Quantum Gases: Resonance, Quantum magnetism and Non-Abelian vortices
低维量子气体:共振、量子磁性和非阿贝尔涡旋
- 批准号:
288179-2013 - 财政年份:2016
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Low Dimensional Quantum Gases: Resonance, Quantum magnetism and Non-Abelian vortices
低维量子气体:共振、量子磁性和非阿贝尔涡旋
- 批准号:
288179-2013 - 财政年份:2015
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Low Dimensional Quantum Gases: Resonance, Quantum magnetism and Non-Abelian vortices
低维量子气体:共振、量子磁性和非阿贝尔涡旋
- 批准号:
288179-2013 - 财政年份:2015
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
基于超声微反应法的碳量子点多色光谱与跨维度结构精确调控机理研究
- 批准号:52005314
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
面向广域量子计算网络的高维度量子信道性质的研究
- 批准号:62071064
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
基于单原子与低维度系统非互易相互作用的量子调控及应用
- 批准号:11904171
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
多维度调控的超快光谱在二维半导体缺陷态光物理和量子相干控制中的应用
- 批准号:91950112
- 批准年份:2019
- 资助金额:80.0 万元
- 项目类别:重大研究计划
非整数量子维度辫子群表示的杨巴克斯特参数化及其物理含义
- 批准号:11905108
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Engineering Future Quantum Technologies in Low-Dimensional Systems
低维系统中的未来量子技术工程
- 批准号:
MR/X006077/1 - 财政年份:2024
- 资助金额:
$ 2.4万 - 项目类别:
Fellowship
ERI: Development of light-emitting devices having intensive quantum-optical properties using a low-dimensional semiconducting material
ERI:使用低维半导体材料开发具有强量子光学特性的发光器件
- 批准号:
2301580 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Ultrafast spectroscopy simulation of low-dimensional strongly correlated electron systems using tensor network
使用张量网络的低维强相关电子系统的超快光谱模拟
- 批准号:
23K03286 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topological Quantum Field Theory and Geometric Structures in Low Dimensional Topology
低维拓扑中的拓扑量子场论和几何结构
- 批准号:
2304033 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Exploring materials science based on embedding low-dimensional electronic states
基于嵌入低维电子态探索材料科学
- 批准号:
23H05469 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Grant-in-Aid for Scientific Research (S)