Fault detection and diagnosis (FDD) system for end of production line testing of alternators

用于交流发电机生产线末端测试的故障检测和诊断 (FDD) 系统

基本信息

  • 批准号:
    486107-2015
  • 负责人:
  • 金额:
    $ 9.66万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Collaborative Research and Development Grants
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

Product quality and reliability continues to be one of the top priorities for auto manufacturers, and these mustbe maintained despite competitive pressures and the need for higher manufacturing efficiency and lowerproduction costs. As the Original Equipment Manufacturers (OEMs) move to leaner structures, the demandsplaced on their equipment suppliers to assure quality and reliability is increasing. Typically the automotivesuppliers have fewer internal resources than OEMs with less capability and expertise to perform the requiredquality and reliability analysis.This proposal is a continuation of a project with D&V Electronics on developing Fault Detection andDiagnosis (FDD) capabilities for end of production line testing of alternators. This cooperation has so farresulted in the development of an algorithm referred to as the Industrial Extended Multi-Scale PrincipleComponents Analysis (IEMSPCA) that has previously been applied to automotive starters. Both vibration andsound measurement were implemented in IEMSPCA. It performed FDD analysis in less than 15 seconds andhas achieved more than 96% detection success rate when applied to known faults on 26377 starter test cases.In this project the IEMSPCA will be further developed to be able to detect, diagnose, characterize and adapt tounknown as well as previously known fault conditions occurring during end-of-line testing of alternators.Intelligent strategies such as deep learning will be applied and a larger array of signals including vibration,sound, voltage, and current measurements will be used. Model-based strategies will be applied for improvingdiagnosis capabilities for a select range of fault conditions. The research outcomes will be implemented on aD&V Electronics test cell platform.
产品质量和可靠性仍然是汽车制造商的首要任务之一,尽管有竞争性压力,并且需要提高制造效率和降低生产成本,但必须保持这些优先事项。随着原始设备制造商(OEM)转移到更精简的结构时,其设备供应商的要求提高了质量和可靠性。通常,汽车供应商的内部资源比OEM的内部资源少于OEM,具有执行所需质量和可靠性分析的能力和专业知识。该提案是一个项目的延续,该项目的D&V电子设备用于开发故障检测和登录功能(FDD),用于生产线测试交流发电机发电机发电机发电机发电机发电机发电机的最终生产线测试功能。这种合作在开发的算法中是如此挑剔,该算法称为工业扩展的多尺度原则分析(IEMSPCA),该算法以前已应用于汽车启动器。 IEMSPCA实现了振动和节目测量。它在不到15秒的时间内进行了FDD分析,并且在26377启动器测试用例上应用已知故障时,它实现了96%以上的检测成功率。在该项目中,IEMSPCA将进一步开发,以便能够检测,诊断,表征和适应Tounkoney以及以前已知的断层条件在交流发电机的线结束测试中发生。将应用诸如深度学习的智能策略,并将使用较大的信号,包括振动,声音,电压和当前测量值。基于模型的策略将用于改善特定故障条件范围的诊断能力。研究结果将在AD&V电子测试单元平台上实施。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Habibi, Saeid其他文献

Low Temperature, Current Dependent Battery State Estimation Using Interacting Multiple Model Strategy
  • DOI:
    10.1109/access.2021.3095938
  • 发表时间:
    2021-01-01
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Messing, Marvin;Rahimifard, Sara;Habibi, Saeid
  • 通讯作者:
    Habibi, Saeid
BATTERY STATE OF CHARGE ESTIMATION USING AN ARTIFICIAL NEURAL NETWORK
Kalman and Smooth Variable Structure Filters for Robust Estimation
Estimating battery state of health using electrochemical impedance spectroscopy and the relaxation effect
  • DOI:
    10.1016/j.est.2021.103210
  • 发表时间:
    2021-09-10
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Messing, Marvin;Shoa, Tina;Habibi, Saeid
  • 通讯作者:
    Habibi, Saeid
Parameter identification in a high performance hydrostatic actuation system using the Unscented Kalman Filter

Habibi, Saeid的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Habibi, Saeid', 18)}}的其他基金

Advanced integrated Control and Monitoring of Actuation Systems
驱动系统的先进集成控制和监控
  • 批准号:
    RGPIN-2020-05735
  • 财政年份:
    2022
  • 资助金额:
    $ 9.66万
  • 项目类别:
    Discovery Grants Program - Individual
Maximizing Information Extraction in Smart Condition Monitoring Systems
最大限度地提取智能状态监测系统中的信息
  • 批准号:
    CRC-2020-00127
  • 财政年份:
    2022
  • 资助金额:
    $ 9.66万
  • 项目类别:
    Canada Research Chairs
Advanced integrated Control and Monitoring of Actuation Systems
驱动系统的先进集成控制和监控
  • 批准号:
    RGPIN-2020-05735
  • 财政年份:
    2021
  • 资助金额:
    $ 9.66万
  • 项目类别:
    Discovery Grants Program - Individual
Maximizing Information Extraction In Smart Condition Monitoring Systems
最大限度地提取智能状态监测系统中的信息
  • 批准号:
    CRC-2020-00127
  • 财政年份:
    2021
  • 资助金额:
    $ 9.66万
  • 项目类别:
    Canada Research Chairs
Condition monitoring and testing of powertrain elements
动力总成元件的状态监测和测试
  • 批准号:
    549016-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 9.66万
  • 项目类别:
    Alliance Grants
Hybrid Electric Vehicle Powertrain Design and Development
混合动力电动汽车动力总成设计与开发
  • 批准号:
    482038-2016
  • 财政年份:
    2021
  • 资助金额:
    $ 9.66万
  • 项目类别:
    Collaborative Research and Training Experience
Tool for qualitative performance comparison of internal combustion engines components using optimized engine calibration and condition monitoring
使用优化的发动机校准和状态监测对内燃机部件进行定性性能比较的工具
  • 批准号:
    522411-2017
  • 财政年份:
    2020
  • 资助金额:
    $ 9.66万
  • 项目类别:
    Collaborative Research and Development Grants
Condition monitoring and testing of powertrain elements
动力总成元件的状态监测和测试
  • 批准号:
    549016-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 9.66万
  • 项目类别:
    Alliance Grants
Advanced integrated Control and Monitoring of Actuation Systems
驱动系统的先进集成控制和监控
  • 批准号:
    RGPIN-2020-05735
  • 财政年份:
    2020
  • 资助金额:
    $ 9.66万
  • 项目类别:
    Discovery Grants Program - Individual
Maximizing Information Extraction in Smart Condition Monitoring Systems
最大限度地提取智能状态监测系统中的信息
  • 批准号:
    1000233074-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 9.66万
  • 项目类别:
    Canada Research Chairs

相似国自然基金

基于创新的外泌体核酸提取检测技术的早期肺癌多维精准诊断及复发监测研究
  • 批准号:
    82373121
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于PhIP-seq技术筛选类鼻疽诊断标志物及快速免疫检测新方法的建立
  • 批准号:
    82370018
  • 批准年份:
    2023
  • 资助金额:
    70 万元
  • 项目类别:
    面上项目
建立基于CRISPR/Cas12a的基因突变检测系统EasyCatch v2.0实现急性髓系白血病快速诊断和动态监测
  • 批准号:
    82300264
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向肿瘤微环境标志物在体检测诊断的光纤传感技术研究
  • 批准号:
    62335010
  • 批准年份:
    2023
  • 资助金额:
    219 万元
  • 项目类别:
    重点项目
基于高通量单外泌体膜蛋白检测的前列腺癌精准诊断研究
  • 批准号:
    82372349
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Hybrid Data-driven Physics-based Modeling for Machine Fault Detection, Diagnosis, and Prediction
用于机器故障检测、诊断和预测的混合数据驱动的基于物理的建模
  • 批准号:
    RGPIN-2019-03967
  • 财政年份:
    2022
  • 资助金额:
    $ 9.66万
  • 项目类别:
    Discovery Grants Program - Individual
Sensor Fault Detection and Diagnosis for Enhanced Safety of Autonomous Systems
用于增强自主系统安全性的传感器故障检测和诊断
  • 批准号:
    2031333
  • 财政年份:
    2021
  • 资助金额:
    $ 9.66万
  • 项目类别:
    Standard Grant
Hybrid Data-driven Physics-based Modeling for Machine Fault Detection, Diagnosis, and Prediction
用于机器故障检测、诊断和预测的混合数据驱动的基于物理的建模
  • 批准号:
    RGPIN-2019-03967
  • 财政年份:
    2021
  • 资助金额:
    $ 9.66万
  • 项目类别:
    Discovery Grants Program - Individual
RII Track-4: Adaptive Fault Detection and Diagnosis Based on Growing Gaussian Mixture Regressions for High-Performance HVAC Systems
RII Track-4:高性能 HVAC 系统基于增长高斯混合回归的自适应故障检测和诊断
  • 批准号:
    1929209
  • 财政年份:
    2020
  • 资助金额:
    $ 9.66万
  • 项目类别:
    Standard Grant
Hybrid Data-driven Physics-based Modeling for Machine Fault Detection, Diagnosis, and Prediction
用于机器故障检测、诊断和预测的混合数据驱动的基于物理的建模
  • 批准号:
    RGPIN-2019-03967
  • 财政年份:
    2020
  • 资助金额:
    $ 9.66万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了