RII Track-4: Adaptive Fault Detection and Diagnosis Based on Growing Gaussian Mixture Regressions for High-Performance HVAC Systems
RII Track-4:高性能 HVAC 系统基于增长高斯混合回归的自适应故障检测和诊断
基本信息
- 批准号:1929209
- 负责人:
- 金额:$ 21.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-01 至 2023-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Environmental impacts, as well as resource consumption, of building operations are significant throughout the entire life cycle of buildings. Heating ventilation and air conditioning (HVAC) systems consume about two-thirds of the total energy used in commercial buildings. Despite national efforts toward improving performance and sustainability, many existing HVAC systems in buildings do not run efficiently, due to equipment degradation, sensors being out of calibration, or improper control operations. Such problems can result in high maintenance costs, occupant discomfort, and wasted energy. Fault detection and diagnosis (FDD) for HVAC systems in buildings detect and identify operational faults based on the analysis of measured system behaviors. FDD technology is critical to improving building energy efficiency, and reducing or eliminating wasted energy in buildings caused by operational faults. The major challenge in current FDD technology is that the training data available to create diagnostic algorithms do not include all possible operating conditions that the testing systems experience throughout the life cycle. Given that the training data for FDDs does not cover all operating conditions, FDD algorithms for building HVAC systems must evolve along with the changes in building systems and components. The goal of this project is to enhance the robustness and efficiency of FDD technology for high-performance HVAC systems. The proposed research will lead to several broader impacts including research participation of underrepresented undergraduates, K-12 outreach activities, and sharing the experimental data and the FDD method for high-performance HVAC systems with other researchers. The knowledge gained from this research has the potential to significantly enhance building energy efficiency. The overall research goal is to advance robustness and efficiency of Fault detection and diagnosis (FDD) technology through an adaptive machine learning-based approach for high-performance Heating ventilation and air conditioning (HVAC) systems. This research closes critical knowledge gaps in the FDDs for high-performance HVAC systems. First, the experimental study on common faults in high-performance HVAC systems at the Center for High Performance Buildings, Purdue University will result in a thorough understanding of fault features, including system behaviors as well as impacts on energy consumption and environmental conditions. While extensive research has been conducted on the FDD for conventional HVAC systems, the FDD for high-performance HVAC systems has rarely been studied. The experimental data pertaining to common faults in high-performance HVAC systems that will be obtained as a part of this project will, thus, be an invaluable asset to the FDD research community. Second, this research will yield an adaptive FDD method based on growing Gaussian mixture regressions for high-performance HVAC systems in commercial buildings. Traditional FDD methods learn from training data tested under limited operating conditions, after which the learning stops. This new FDD method adapts to the changes in HVAC operating environments, evolves with the changes in building systems and components, and learns to diagnose new faulty conditions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在整个建筑物的整个生命周期中,环境影响以及资源消耗都很重要。加热通风和空调(HVAC)系统消耗了商业建筑中使用的总能量的三分之二。尽管全国性的努力提高了绩效和可持续性,但由于设备降解,传感器不受校准或不适当的控制操作,建筑物中许多现有的HVAC系统并未有效运行。此类问题可能导致高维护成本,居住者不适和浪费能量。建筑物中HVAC系统的故障检测和诊断(FDD)根据测量系统行为的分析检测和识别操作故障。 FDD技术对于提高建筑能源效率,减少或消除由操作故障引起的建筑物中的浪费能量至关重要。当前FDD技术的主要挑战是,可用于创建诊断算法的培训数据不包括测试系统在整个生命周期中经历的所有可能的操作条件。鉴于FDD的培训数据并不涵盖所有操作条件,因此,用于构建HVAC系统的FDD算法必须随着建筑系统和组件的变化而发展。该项目的目的是提高FDD技术对高性能HVAC系统的鲁棒性和效率。 拟议的研究将导致一些更广泛的影响,包括代表性不足的本科生,K-12外展活动的研究参与,并与其他研究人员共享实验数据和实验数据和FDD方法。从这项研究中获得的知识有可能显着提高建筑能源效率。 总体研究目标是通过基于自适应机器学习的高性能加热通风和空调(HVAC)系统来提高故障检测和诊断(FDD)技术的鲁棒性和效率。这项研究缩小了高性能HVAC系统的FDD中的关键知识差距。首先,关于高性能建筑中心的高性能HVAC系统中常见故障的实验研究,普渡大学将对故障特征进行彻底了解,包括系统行为以及对能耗和环境条件的影响。尽管已经针对常规HVAC系统进行了FDD进行了广泛的研究,但很少研究用于高性能HVAC系统的FDD。因此,与高性能HVAC系统中的常见故障有关的实验数据将作为该项目的一部分获得,因此对于FDD研究界来说将是一项无价的资产。其次,这项研究将产生一种自适应FDD方法,基于对商业建筑中高性能HVAC系统的高斯混合物回归的增长。传统的FDD方法从在有限的操作条件下测试的培训数据中学习,此后学习停止。这种新的FDD方法适应了HVAC操作环境的变化,随着建筑系统和组件的变化而演变,并学会了诊断新的故障状况。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的审查标准来通过评估来通过评估来支持的。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Novel Hybrid Modeling Method for Predicting Energy Use of Hydronic Radiant Slab Systems
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Liping Wang;Lichen Wu;James Braun
- 通讯作者:Liping Wang;Lichen Wu;James Braun
Fault Detection and Diagnostic Method Based on Evolving Datadriven Model for Radiant Heating and Cooling Systems
基于演化数据驱动模型的辐射供暖和制冷系统故障检测与诊断方法
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Dahal, Sujit;Wang, Liping;Braun, James
- 通讯作者:Braun, James
An evolving learning method —growing Gaussian mixture regression—for modeling passive chilled beam systems in buildings
- DOI:10.1016/j.enbuild.2022.112227
- 发表时间:2022-05
- 期刊:
- 影响因子:6.7
- 作者:Liping Wang;James Braun;Sujit Dahal
- 通讯作者:Liping Wang;James Braun;Sujit Dahal
An evolving learning-based fault detection and diagnosis method: Case study for a passive chilled beam system
一种不断发展的基于学习的故障检测和诊断方法:被动冷梁系统案例研究
- DOI:10.1016/j.energy.2022.126337
- 发表时间:2023
- 期刊:
- 影响因子:9
- 作者:Wang, Liping;Braun, James;Dahal, Sujit
- 通讯作者:Dahal, Sujit
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Liping Wang其他文献
Dynamic analyses of osteoblast vibrational responses: a finite element viscoelastic model
成骨细胞振动响应的动态分析:有限元粘弹性模型
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Liping Wang;C. Xian - 通讯作者:
C. Xian
Process Variability—Technological Challenge and Design Issue for Nanoscale Devices
工艺变异性——纳米级器件的技术挑战和设计问题
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:3.4
- 作者:
J. Lorenz;E. Bär;S. Barraud;A. Brown;P. Evanschitzky;F. Klüpfel;Liping Wang - 通讯作者:
Liping Wang
Considerations for application of biopharmaceutics classification system in chicken: Exemplified by seven drugs classification.
鸡生物药剂学分类体系应用的思考:以七种药物分类为例
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:1.3
- 作者:
Yang Liu;Xiangxiu Li;Yujuan Zhang;Jinhu Huang;Yucheng Wu;Liping Wang - 通讯作者:
Liping Wang
Urinary retinol binding protein is a potential biomarker for renal function in primary systemic amyloidosis: A retrospective study
尿视黄醇结合蛋白是原发性系统性淀粉样变性肾功能的潜在生物标志物:一项回顾性研究
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:2.6
- 作者:
Feng Li;Yu;Liping Wang;Qian Zhao;Yongping Zhai - 通讯作者:
Yongping Zhai
Formation of high-molecular-weight protein adducts by methyl docosahexaenoate peroxidation products.
二十二碳六烯酸甲酯过氧化产物形成高分子量蛋白质加合物。
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
W. Liu;Hua;Liping Wang;Shan Liu;Jin - 通讯作者:
Jin
Liping Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Liping Wang', 18)}}的其他基金
REU Site: Controlled Environment Agriculture (CEAfREU)
REU 站点:受控环境农业 (CEAfREU)
- 批准号:
2349765 - 财政年份:2024
- 资助金额:
$ 21.71万 - 项目类别:
Standard Grant
Collaborative Research: Electrically Modulated Near-field Thermophotonics with Metal-Oxide-Semiconductor Nanostructures
合作研究:金属氧化物半导体纳米结构的电调制近场热光子学
- 批准号:
2309663 - 财政年份:2023
- 资助金额:
$ 21.71万 - 项目类别:
Standard Grant
Tunable Super-Planckian Near-field Radiative Heat Transfer with Thermochromic Metamaterials
使用热致变色超材料的可调谐超普朗克近场辐射传热
- 批准号:
2212342 - 财政年份:2022
- 资助金额:
$ 21.71万 - 项目类别:
Standard Grant
CAREER: Commercial Building Indoor Greenery Systems' Effects on Thermal Environment and Occupant Comfort under Climate Change
职业:气候变化下商业建筑室内绿化系统对热环境和居住者舒适度的影响
- 批准号:
1944823 - 财政年份:2020
- 资助金额:
$ 21.71万 - 项目类别:
Continuing Grant
CAREER: Coherent Understanding of Magnetic Resonance in Controlling Radiative Transport from Far to Near Field
职业:对磁共振控制从远场到近场的辐射传输的连贯理解
- 批准号:
1454698 - 财政年份:2015
- 资助金额:
$ 21.71万 - 项目类别:
Standard Grant
STTR Phase I: A Gas-Solid Spouted Bed Bioreactor for Solid State Fermentation to Produce Enzymes and Biochemicals from Plant Biomass
STTR 第一阶段:气固喷动床生物反应器,用于固态发酵,从植物生物质中生产酶和生物化学品
- 批准号:
0611075 - 财政年份:2006
- 资助金额:
$ 21.71万 - 项目类别:
Standard Grant
相似国自然基金
基于力-位移自适应追踪的光栅犁剪复合创成机理与控制方法研究
- 批准号:52105438
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于SPOC学习行为分析的学生成长监测及适应性学习支持研究
- 批准号:61907002
- 批准年份:2019
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
自适应网络下基于射频断层扫描与几何约束的无源追踪技术研究
- 批准号:61901206
- 批准年份:2019
- 资助金额:24.5 万元
- 项目类别:青年科学基金项目
陡峭地形附近自适应平流追踪算法和气压梯度力的高阶数值方案研究
- 批准号:41905093
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
自适应网格大气化学输送模式关键算法与检验研究
- 批准号:41705104
- 批准年份:2017
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
RII Track-4:NSF: HEAL: Heterogeneity-aware Efficient and Adaptive Learning at Clusters and Edges
RII Track-4:NSF:HEAL:集群和边缘的异质性感知高效自适应学习
- 批准号:
2327452 - 财政年份:2024
- 资助金额:
$ 21.71万 - 项目类别:
Standard Grant
RII Track-4: NSF: Scalable MPI with Adaptive Compression for GPU-based Computing Systems
RII Track-4:NSF:适用于基于 GPU 的计算系统的具有自适应压缩的可扩展 MPI
- 批准号:
2327266 - 财政年份:2024
- 资助金额:
$ 21.71万 - 项目类别:
Standard Grant
RII Track-2 FEC: An Interdisciplinary Program for Research, Education, and Outreach on Climate Change and Adaptive Resilience in the Yazoo - Mississippi Delta
RII Track-2 FEC:亚祖 - 密西西比三角洲气候变化和适应性恢复力研究、教育和推广的跨学科计划
- 批准号:
2316382 - 财政年份:2023
- 资助金额:
$ 21.71万 - 项目类别:
Cooperative Agreement
RII Track-1: Adaptive and Resilient Infrastructures driven by Social Equity (ARISE)
RII Track-1:社会公平驱动的适应性和弹性基础设施 (ARISE)
- 批准号:
2148878 - 财政年份:2022
- 资助金额:
$ 21.71万 - 项目类别:
Cooperative Agreement
RII Track-1: Linking Genome to Phenome to Predict Adaptive Responses of Organisms to Changing Landscapes
RII Track-1:将基因组与表型组联系起来以预测生物体对不断变化的景观的适应性反应
- 批准号:
1757324 - 财政年份:2018
- 资助金额:
$ 21.71万 - 项目类别:
Cooperative Agreement