Collaborative Research: Electrically Modulated Near-field Thermophotonics with Metal-Oxide-Semiconductor Nanostructures

合作研究:金属氧化物半导体纳米结构的电调制近场热光子学

基本信息

  • 批准号:
    2309663
  • 负责人:
  • 金额:
    $ 25.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-11-01 至 2026-10-31
  • 项目状态:
    未结题

项目摘要

Collaborative Research: Electrically Modulated Near-field Thermophotonics with Metal-Oxide-Semiconductor Nanostructures Thermophotonics is crucial to heat-to-power conversion, non-contact thermal management, thermal imaging, and laser manufacturing, where dynamically tunable thermal emission or absorption are highly desired with great controllability and versatility. We aim to employ metal-oxide-semiconductor (MOS) nanostructures to achieve significant modulation of radiative heat transfer via electrical tuning with heat flux exceeding the far-field blackbody limit. The success of this project would ultimately lead to novel applications of tunable thermoelectric conversion, heat control, thermal circuits with thermophotonic means. The research outcomes will be quickly disseminated through journal publications, conference presentations and course teaching. The PIs will train the next generation of workforce with an emphasis on broader participation of underrepresented groups such as female and minority students. Graduate students will learn the fundamentals of multiple disciplines, which will well prepare them for solving future energy challenges in engineering communities. The undergraduate research programs at ASU and UA offer a great opportunity for undergraduate students to participate in the research activities in the PIs’ labs. The PIs will engage local K-12 students through various outreaching programs at ASU and UA, aiming to spark their interests in STEM. It is known that the capacitance of planar MOS structures varies with the gate voltage which causes depletion or accumulation of free charge carriers within the semiconductor, but it occurs only in the ultrathin active region very close to the oxide interface on the order of ~10 nm approximated by the Debye length. With the infrared penetration depth of planar semiconductor on the order of micrometers, the absorption variation within such ultrathin active region could barely cause appreciable modulation absorption/emission within the whole structure. The proposed near-field MOS nanostructure would overcome this challenge by utilizing a fin field-effect transistor with the wrap-around ultrathin metal electrode and oxide gate layers as well as near-field effect. The carrier concentration of the semiconductor nanostructures whose diameter is about several tens of nanometers will change significantly with depletion or accumulation upon electrical gating. The drastically varied dielectric functions of the nanostructure layer will lead to electrically modulated near-field radiative heat transfer. By placing the MOS nanostructure in close proximity to an emitting surface with nanometric gap distances, the near-field effect with coupled evanescent waves could occur to enhance the radiative energy significantly surpassing the far-field blackbody limit. The proposed research project will be carried out with a combination of theoretical and experimental tasks including design and theoretical modeling, sample fabrication and characterization, near-field measurements and metrology development, as well as validation and optimization.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
合作研究:使用金属氧化物半导体纳米结构的电调制近场热光子学热光子学对于热电转换、非接触式热管理、热成像和激光制造至关重要,这些领域非常需要动态可调的热发射或吸收我们的目标是利用金属氧化物半导体(MOS)纳米结构通过电来实现辐射传热的显着调节。该项目的成功将最终导致可调谐热电转换、热控制、热光子手段的热电路的新颖应用,该研究成果将通过期刊出版物、会议演讲迅速传播。 PI 将培训下一代劳动力,重点是女性和少数族裔学生等代表性不足的群体的更广泛参与。研究生将学习多个学科的基础知识,这将为他们解决未来的能源挑战做好准备。亚利桑那州立大学和亚利桑那州立大学的本科生研究项目为本科生参与 PI 实验室的研究活动提供了绝佳的机会,PI 将通过亚利桑那州立大学和 UA 的各种外展项目吸引当地 K-12 学生。激发他们对 STEM 的兴趣众所周知,平面 MOS 结构的电容随栅极电压变化,从而导致半导体内自由电荷载流子的耗尽或积累,但这种情况仅发生在非常接近的超薄有源区域中。氧化物界面的德拜长度近似为约10纳米,而平面半导体的红外穿透深度为微米量级,如此超薄的有源区域内的吸收变化几乎不会在整个结构内引起明显的调制吸收/发射。所提出的近场 MOS 纳米结构将通过利用具有环绕式超薄金属电极和氧化物栅极层的鳍式场效应晶体管以及近场效应半导体的载流子浓度来克服这一挑战。大约几十纳米的纳米结构将随着电门控的耗尽或积累而发生显着变化,通过将 MOS 纳米结构放置在紧邻的区域,纳米结构层的介电功能将产生电调制的近场辐射传热。具有纳米间隙距离的发射表面,可能会发生耦合倏逝波的近场效应,从而增强辐射能量,显着超过远场黑体极限。拟议的研究项目将与组合进行。理论和实验任务,包括设计和理论建模、样品制造和表征、近场测量和计量开发以及验证和优化。该奖项是 NSF 的法定使命,并通过使用基金会的智力价值进行评估,被认为值得支持以及更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Liping Wang其他文献

Urinary retinol binding protein is a potential biomarker for renal function in primary systemic amyloidosis: A retrospective study
尿视黄醇结合蛋白是原发性系统性淀粉样变性肾功能的潜在生物标志物:一项回顾性研究
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Feng Li;Yu;Liping Wang;Qian Zhao;Yongping Zhai
  • 通讯作者:
    Yongping Zhai
Considerations for application of biopharmaceutics classification system in chicken: Exemplified by seven drugs classification.
鸡生物药剂学分类体系应用的思考:以七种药物分类为例
N-acetylcysteine as a novel methacrylate-based resin cement component: effect on cell apoptosis and genotoxicity in human gingival fibroblasts
N-乙酰半胱氨酸作为一种新型甲基丙烯酸酯树脂水泥成分:对人牙龈成纤维细胞细胞凋亡和遗传毒性的影响
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Yang Yang;Liping Wang;Zelun Huang;Lingu Ge;Jianwei Shi
  • 通讯作者:
    Jianwei Shi
[Controlled ovarian stimulation protocols in endometriosis patients: with antagonist or agonist?]
[子宫内膜异位症患者的受控卵巢刺激方案:拮抗剂还是激动剂?]
On Monomeric and Multimeric Structures-Based Protein-Ligand Interactions
基于单体和多聚体结构的蛋白质-配体相互作用

Liping Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Liping Wang', 18)}}的其他基金

REU Site: Controlled Environment Agriculture (CEAfREU)
REU 站点:受控环境农业 (CEAfREU)
  • 批准号:
    2349765
  • 财政年份:
    2024
  • 资助金额:
    $ 25.2万
  • 项目类别:
    Standard Grant
Tunable Super-Planckian Near-field Radiative Heat Transfer with Thermochromic Metamaterials
使用热致变色超材料的可调谐超普朗克近场辐射传热
  • 批准号:
    2212342
  • 财政年份:
    2022
  • 资助金额:
    $ 25.2万
  • 项目类别:
    Standard Grant
RII Track-4: Adaptive Fault Detection and Diagnosis Based on Growing Gaussian Mixture Regressions for High-Performance HVAC Systems
RII Track-4:高性能 HVAC 系统基于增长高斯混合回归的自适应故障检测和诊断
  • 批准号:
    1929209
  • 财政年份:
    2020
  • 资助金额:
    $ 25.2万
  • 项目类别:
    Standard Grant
CAREER: Commercial Building Indoor Greenery Systems' Effects on Thermal Environment and Occupant Comfort under Climate Change
职业:气候变化下商业建筑室内绿化系统对热环境和居住者舒适度的影响
  • 批准号:
    1944823
  • 财政年份:
    2020
  • 资助金额:
    $ 25.2万
  • 项目类别:
    Continuing Grant
CAREER: Coherent Understanding of Magnetic Resonance in Controlling Radiative Transport from Far to Near Field
职业:对磁共振控制从远场到近场的辐射传输的连贯理解
  • 批准号:
    1454698
  • 财政年份:
    2015
  • 资助金额:
    $ 25.2万
  • 项目类别:
    Standard Grant
STTR Phase I: A Gas-Solid Spouted Bed Bioreactor for Solid State Fermentation to Produce Enzymes and Biochemicals from Plant Biomass
STTR 第一阶段:气固喷动床生物反应器,用于固态发酵,从植物生物质中生产酶和生物化学品
  • 批准号:
    0611075
  • 财政年份:
    2006
  • 资助金额:
    $ 25.2万
  • 项目类别:
    Standard Grant

相似国自然基金

离子型稀土渗流-应力-化学耦合作用机理与溶浸开采优化研究
  • 批准号:
    52364012
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
亲环蛋白调控作物与蚜虫互作分子机制的研究
  • 批准号:
    32301770
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于金属-多酚网络衍生多相吸波体的界面调控及电磁响应机制研究
  • 批准号:
    52302362
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
职场网络闲逛行为的作用结果及其反馈效应——基于行为者和观察者视角的整合研究
  • 批准号:
    72302108
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
EIF6负调控Dicer活性促进EV71复制的分子机制研究
  • 批准号:
    32300133
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: CDS&E: Computational Exploration of Electrically Conductive Metal-Organic Frameworks as Cathode Materials in Lithium-Sulfur Batteries
合作研究:CDS
  • 批准号:
    2302618
  • 财政年份:
    2023
  • 资助金额:
    $ 25.2万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Computational Exploration of Electrically Conductive Metal-Organic Frameworks as Cathode Materials in Lithium-Sulfur Batteries
合作研究:CDS
  • 批准号:
    2302617
  • 财政年份:
    2023
  • 资助金额:
    $ 25.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Electrically Modulated Near-field Thermophotonics with Metal-Oxide-Semiconductor Nanostructures
合作研究:金属氧化物半导体纳米结构的电调制近场热光子学
  • 批准号:
    2309664
  • 财政年份:
    2023
  • 资助金额:
    $ 25.2万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: Electrically Pumped Monolithic Bi-photon emitters
EAGER:合作研究:电泵浦单片双光子发射器
  • 批准号:
    2135088
  • 财政年份:
    2021
  • 资助金额:
    $ 25.2万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: Electrically Pumped Monolithic Bi-photon emitters
EAGER:合作研究:电泵浦单片双光子发射器
  • 批准号:
    2135083
  • 财政年份:
    2021
  • 资助金额:
    $ 25.2万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了