Shear Viscosity of Liquid metals and alloys: Experiments and Atomic Characterization.

液态金属和合金的剪切粘度:实验和原子表征。

基本信息

  • 批准号:
    RGPIN-2014-06226
  • 负责人:
  • 金额:
    $ 2.11万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2016
  • 资助国家:
    加拿大
  • 起止时间:
    2016-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

The main objective of this study is to evaluate, characterize and quantify the flow behavior (shear stress as a function of shear rate) and shear viscosity of liquid metals and alloys that hold both academic and commercial significance. The research involves three interacting themes carried out in tandem: rheological experiments, atomic structure characterization through diffraction experiments and modeling through molecular dynamics and first principle formulations. The successful completion of this initiative and characterization of the flow behavior of liquid metals and alloys will have significant and far reaching impact in several areas of fundamental and applied materials science: casting (direct chill, continuous and near net shaped), joining (welding, soldering and brazing), single crystal growth, zone-refining and metal matrix composite processing to name a few. The design of many advanced manufacturing processes involving liquid metals and alloys requires a comprehensive understanding of transport properties in the liquid phases (such as the shear viscosity and associated relaxation time). These transport properties depend intimately on the microscopic structure and atomic composition of these liquids and our knowledge of this correlation is quite limited at present. While phenomenological models, either entirely empirical, or based on certain approximations of the microscopic processes involved in liquid transport have been used to predict transport phenomena in liquids, the gap between experiments and these models remains quite large. Our recent exploratory experiments and publications demonstrate that contrary to conventional wisdom, a wide variety of liquid metals and alloys exhibit non-Newtonian behavior, which are more pronounced at low shear rate regimes; this behavior is attributed to a transition in the governing mechanism from the resistance of the metallic bonding to shear, to momentum transfer between atom layers with increasing strain rate. At low shear rates the resistance offered to the flow of these liquids from the strong atomic bonds existing in the short range atomic order of the liquid structure dominates while at higher shear rates, the momentum transfer between atomic layers dominates the flow mechanism. This work motivates us to examine the fundamental mechanisms governing flow behavior in liquid metals and alloys through rigorous experiments, and atomistic structure evaluation and simulations, with a view to correlate and quantify the shear viscosity and the impact of liquid atomic structure on the same. Currently, our research group has the only high temperature rheometer in the North America, capable of evaluating rheological properties of liquids with a maximum temperature of about 1873 K in an environment chamber; acquired through our recent partnership with the Switzerland rheology equipment manufacturer, Anton Paar. Pure liquid metals and alloys of commercial interests such as Fe, steel, Si, Al alloys, Mg alloys, Cu alloy and Pb free solder alloys would be used as materials for rheological characterization (shear stress as a function of shear rate) with the high temperature rheometer. Diffraction experiments with both the Neutron and Synchrotron beam sources will evaluate structure information of liquid metals under controlled applied shear. Non-equilibrium molecular dynamics simulations using the popular molecular dynamics software packages, including VASP and LAMMPS will be formulated; attention will be restricted to determining and validating shear viscosity in pure liquid metals and simple binary alloys, and interatomic potentials appropriate for a study of shear viscosity will be employed. Through this study, we will gain useful insights into the physics governing this behavior.
本研究的主要目的是评估、表征和量化具有学术和商业意义的液态金属和合金的流动行为(剪切应力作为剪切速率的函数)和剪切粘度。该研究涉及三个相互关联的主题:流变实验、通过衍射实验表征原子结构以及通过分子动力学和第一原理公式进行建模。这一举措的成功完成以及液态金属和合金流动行为的表征将对基础和应用材料科学的几个领域产生重大而深远的影响:铸造(直接激冷、连续和近净成形)、连接(焊接、焊接和钎焊)、单晶生长、区域细化和金属基复合材料加工等等。许多涉及液态金属和合金的先进制造工艺的设计需要全面了解液相的传输特性(例如剪切粘度和相关的弛豫时间)。这些传输特性密切取决于这些液体的微观结构和原子组成,目前我们对这种相关性的了解相当有限。虽然现象学模型(无论是完全经验的还是基于液体传输中涉及的微观过程的某些近似)已被用来预测液体中的传输现象,但实验和这些模型之间的差距仍然相当大。我们最近的探索性实验和出版物表明,与传统观点相反,多种液态金属和合金表现出非牛顿行为,这在低剪切速率状态下更为明显;这种行为归因于控制机制从金属键合剪切阻力转变为原子层之间随应变率增加的动量传递。在低剪切速率下,液体结构的短程原子有序中存在的强原子键对这些液体的流动产生的阻力占主导地位,而在较高剪切速率下,原子层之间的动量传递在流动机制中占主导地位。这项工作促使我们通过严格的实验、原子结构评估和模拟来研究控制液态金属和合金流动行为的基本机制,以期关联和量化剪切粘度以及液态原子结构对其的影响。目前,我们课题组拥有北美唯一的高温流变仪,能够在环境室中评估最高温度约1873 K的液体流变特性;我们最近与瑞士流变设备制造商安东帕合作收购了该产品。具有商业利益的纯液态金属和合金,如铁、钢、硅、铝合金、镁合金、铜合金和无铅焊料合金,将用作流变表征(剪切应力作为剪切速率的函数)的材料,具有高温度流变仪。使用中子和同步加速器束源进行的衍射实验将评估液态金属在受控施加剪切下的结构信息。使用流行的分子动力学软件包(包括 VASP 和 LAMMPS)进行非平衡分子动力学模拟;注意力将仅限于确定和验证纯液态金属和简单二元合金中的剪切粘度,并将采用适合剪切粘度研究的原子间势。通过这项研究,我们将获得对控制这种行为的物理原理的有用见解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shankar, Sumanth其他文献

Evolution of Fe based intermetallic phases in Al-Si hypoeutectic casting alloys: Influence of the Si and Fe concentrations, and solidification rate
  • DOI:
    10.1016/j.jallcom.2013.04.139
  • 发表时间:
    2013-11-15
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Gorny, Anton;Manickaraj, Jeyakumar;Shankar, Sumanth
  • 通讯作者:
    Shankar, Sumanth
Quantitative metallography of precipitating and secondary phases after strengthening treatment of net shaped casting of Al-Zn-Mg-Cu (7000) alloys
Partial pair correlation functions and viscosity of liquid Al-Si hypoeutectic alloys via high-energy X-ray diffraction experiments
  • DOI:
    10.1080/14786435.2011.597360
  • 发表时间:
    2011-01-01
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Srirangam, Prakash;Jeyakumar, Manickaraj;Shankar, Sumanth
  • 通讯作者:
    Shankar, Sumanth
Rotational rheometry of liquid metal systems: Measurement geometry selection and flow curve analysis
  • DOI:
    10.1016/j.jnnfm.2010.03.009
  • 发表时间:
    2010-07-01
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Malik, Mohammad Minhajuddin;Jeyakumar, Manickaraj;Shankar, Sumanth
  • 通讯作者:
    Shankar, Sumanth
Controlled Diffusion Solidification (CDS) of Al-Zn-Mg-Cu (7050): Microstructure, heat treatment and mechanical properties

Shankar, Sumanth的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shankar, Sumanth', 18)}}的其他基金

Design and Optimization of Joining shaped casting of Al 7xxx structural alloy component using Self Piercing Rivets
Al 7xxx结构合金构件自冲铆钉连接成形铸件的设计与优化
  • 批准号:
    543964-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Collaborative Research and Development Grants
Design and Optimization of Joining shaped casting of Al 7xxx structural alloy component using Self Piercing Rivets
Al 7xxx结构合金构件自冲铆钉连接成形铸件的设计与优化
  • 批准号:
    543964-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Collaborative Research and Development Grants
Design and Optimization of Joining shaped casting of Al 7xxx structural alloy component using Self Piercing Rivets
Al 7xxx结构合金构件自冲铆钉连接成形铸件的设计与优化
  • 批准号:
    543964-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Collaborative Research and Development Grants
Shear Viscosity of Liquid metals and alloys: Experiments and Atomic Characterization.
液态金属和合金的剪切粘度:实验和原子表征。
  • 批准号:
    RGPIN-2014-06226
  • 财政年份:
    2018
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
New and improved AL alloy for high pressure die casting of structural automotive components - characterization, heat treatment and mechanical
用于汽车结构部件高压压铸的新型改进铝合金 - 表征、热处理和机械
  • 批准号:
    512798-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Collaborative Research and Development Grants
Evaluation and development of enabling technologies for lightweight automotive structural cast components with wrought aluminum and high performance magnesium alloys
锻铝和高性能镁合金轻量化汽车结构铸造部件使能技术的评估和开发
  • 批准号:
    435504-2012
  • 财政年份:
    2018
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Automotive Partnership Canada Project
New and improved AL alloy for high pressure die casting of structural automotive components - characterization, heat treatment and mechanical
用于汽车结构部件高压压铸的新型改进铝合金 - 表征、热处理和机械
  • 批准号:
    512798-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Collaborative Research and Development Grants
Shear Viscosity of Liquid metals and alloys: Experiments and Atomic Characterization.
液态金属和合金的剪切粘度:实验和原子表征。
  • 批准号:
    RGPIN-2014-06226
  • 财政年份:
    2017
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Shear Viscosity of Liquid metals and alloys: Experiments and Atomic Characterization.
液态金属和合金的剪切粘度:实验和原子表征。
  • 批准号:
    RGPIN-2014-06226
  • 财政年份:
    2015
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Evaluation and development of enabling technologies for lightweight automotive structural cast components with wrought aluminum and high performance magnesium alloys
锻铝和高性能镁合金轻量化汽车结构铸造部件使能技术的评估和开发
  • 批准号:
    435504-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Automotive Partnership Canada Project

相似国自然基金

醚基稀有金属功能离子液体与有机溶剂二元混合物性质的研究
  • 批准号:
    21703090
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
极端条件下元素液体(Se和I2)的结构和性质研究
  • 批准号:
    11504354
  • 批准年份:
    2015
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
CaSiO3液体高压输运性质的理论研究
  • 批准号:
    11464025
  • 批准年份:
    2014
  • 资助金额:
    50.0 万元
  • 项目类别:
    地区科学基金项目
基于非晶合金液体全范围粘度测试平台的非晶形成能力研究
  • 批准号:
    51301194
  • 批准年份:
    2013
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
低粘度离子液体体系的设计及其溶解纤维素的研究
  • 批准号:
    21373078
  • 批准年份:
    2013
  • 资助金额:
    83.0 万元
  • 项目类别:
    面上项目

相似海外基金

Impact of Blood Viscosity and Vascular Compliance on Fontan Circulation Dysfunction in Children
血液粘度和血管顺应性对儿童Fontan循环障碍的影响
  • 批准号:
    10579966
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
Measurement of ab-initio physiomarker using wearable sensors to predict aneurysm growth and formation
使用可穿戴传感器测量从头开始的生理标志物以预测动脉瘤的生长和形成
  • 批准号:
    10802098
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
Impact of Blood Viscosity and Vascular Compliance on Fontan Circulation Dysfunction in Children
血液粘度和血管顺应性对儿童Fontan循环障碍的影响
  • 批准号:
    10350382
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
Measurement of ab-initio physiomarker using wearable sensors to predict aneurysm growth and formation
使用可穿戴传感器测量从头开始的生理标志物以预测动脉瘤的生长和形成
  • 批准号:
    10390070
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
Elucidating Mechanisms for Rapid Vascularization by Modeling Vascular Islands in Early Embryogenesis
通过模拟早期胚胎发生中的血管岛来阐明快速血管化的机制
  • 批准号:
    10313257
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了