Protein folding in the endoplasmic reticulum

内质网中的蛋白质折叠

基本信息

  • 批准号:
    RGPIN-2014-04686
  • 负责人:
  • 金额:
    $ 3.86万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2016
  • 资助国家:
    加拿大
  • 起止时间:
    2016-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

Membrane and secreted proteins acquire post-translational modifications and become folded through the secretory pathway comprised of the endoplasmic reticulum (ER), the Golgi body and secretory vesicles. To accomplish this, cells have evolved a set of specialized chaperones, enzymes, and receptor molecules that mediate the multiple steps of protein folding and trafficking. My research addresses two aspects of protein folding in the ER: 1) the link between the carbohydrate structure of N-linked glycoproteins and the recruitment of chaperones, and 2) the mechanism of recognition of unfolded proteins. Both processes are carried out by chaperones of the calnexin cycle. The calnexin cycle consists of chaperones that fold glycoproteins and enzymes that modify the attached glycan to reflect the protein's folded state. The function of the cycle is to promote the efficient folding of newly synthesized glycoproteins and prevent their premature export from the ER. There are a number of unanswered questions about the calnexin cycle: i) Do the chaperones function analogously in lower organisms? ii) How does the calnexin cycle distinguish between folded and unfolded proteins? iii) Is there a general code for how unfolded proteins are recognized? My research group has made significant progress in answering these questions. In published work, we identified a novel association between a peptidyl prolyl isomerase and the calnexin cycle. We also determined how the chaperone calreticulin recognizes glycans. In unpublished work, we have cloned, expressed and purified calnexin cycle components from yeast and a key ER sensor of unfolded proteins. Here, I propose to continue these studies by combining structural biology and in vitro functional assays with work focused on two aims: 1) Structural and functional studies of a lectin chaperone complex from yeast. We have identified the interaction loop from yeast calnexin (Cne1p) and shown that it interacts with a yeast protein disulfide isomerase (Mpd1p). We will identify the binding surface on Mpd1p and use that information to guide co-crystallization of the complex. We will carry out functional assays to test our hypothesis that Cne1p•Mpd1p function analogously to their mammalian orthologs. This work will extend our understanding of the calnexin cycle to the well-characterize yeast ER. 2) Studies of UDP-glucose:glycoprotein-glucosyltransferase (UGGT). This key ER enzyme specifically adds a glucose residue to the N-linked glycan of unfolded proteins. We have extensive preliminary data for the purification of UGGT from multiple species with functional assays to show the purified protein is active. Since the submission of the Notice of Intent, we have made exciting progress by electron microscopy (EM). Negative-stain 3D reconstructions of UGGT reproducibly show a large central cavity, which we hypothesize harbors the catalytic site. This would explain the specificity of UGGT for unfolded proteins. Glycans on folded domains are unable to access the catalytic site, while glycans on an unfolded polypeptide chain are able to enter the chamber. The presence of hydrophobic residues lining the cavity would favor the binding of unfolded protein segments and further increase the selectivity of the enzyme. We will test this hypothesis through EM, X-ray crystallography and SAXS studies of UGGT. My group is well-positioned to make substantial progress in understanding protein folding in the ER. We have experience with the techniques proposed, access to the plasmids, materials, and assays required, and established collaborations with experts in EM and ER chaperones. The research promotes interdisciplinary training at the interface of biology, chemistry and physics.
膜和分泌蛋白获得翻译后修饰,并通过由内质网 (ER)、高尔基体和分泌囊泡组成的分泌途径折叠。为了实现这一目标,细胞进化出了一组专门的伴侣、酶和受体分子。介导蛋白质折叠和运输的多个步骤。 我的研究涉及 ER 中蛋白质折叠的两个方面:1)N 连接糖蛋白的碳水化合物结构与分子伴侣的招募之间的联系,以及 2)未折叠蛋白质的识别机制。钙联接蛋白循环由折叠糖蛋白的分子伴侣和修饰附着的聚糖以反映蛋白质折叠状态的酶组成。该循环的功能是促进效率。折叠新合成的糖蛋白并防止其过早从内质网输出。 关于钙连接蛋白循环还有许多未解答的问题:i) 分子伴侣在低等生物中是否具有类似的功能? ii) 钙连接蛋白循环如何区分折叠和未折叠的蛋白质? iii) 是否存在如何识别未折叠蛋白质的通用代码? ? 我的研究小组在回答这些问题方面取得了重大进展,在已发表的工作中,我们发现了肽基脯氨酰异构酶与钙联蛋白循环之间的新关联。在未发表的工作中,我们还确定了伴侣钙网蛋白如何识别聚糖。以及从酵母中纯化的钙联蛋白循环成分和未折叠蛋白的关键内质网传感器。 在这里,我建议通过结合结构生物学和体外功能学来继续这些研究,重点关注两个检测目标: 1) 酵母凝集素伴侣复合物的结构和功能研究 我们已经鉴定了酵母钙连接蛋白 (Cne1p) 的相互作用环,并表明它与酵母蛋白二硫键异构酶 (Mpd1p) 相互作用。使用该信息来指导复合物的共结晶,我们将进行功能测定来检验我们的假设,即 Cne1p•Mpd1p 功能。类似于它们的哺乳动物直系同源物,这项工作将扩展我们对钙联蛋白循环的理解,以充分表征酵母内质网。 2) UDP-葡萄糖:糖蛋白-葡萄糖基转移酶 (UGGT) 的研究 这种关键的 ER 酶特异性地将葡萄糖残基添加到未折叠蛋白的 N 连接聚糖上,我们拥有通过功能测定从多个物种中纯化 UGGT 的大量初步数据。自从提交意向通知以来,我们通过电子显微镜 (EM) 的负染色 3D 重建取得了令人兴奋的进展。 UGGT 可重复地显示出一个大的中央空腔,其中包含催化位点,这可以解释折叠结构域上的聚糖无法进入催化位点,而未折叠的多肽链上的聚糖则能够进入。腔内疏水残基的存在将有利于未折叠蛋白质片段的结合,并进一步提高酶的选择性。我们将通过 EM、X 射线检验这一假设。 UGGT 的晶体学和 SAXS 研究。 我的团队有能力在理解 ER 中的蛋白质折叠方面取得实质性进展,我们在所提出的技术、获得所需的质粒、材料和分析方面拥有丰富的经验,并与 EM 和 ER 伴侣蛋白研究领域的专家建立了合作。促进生物学、化学和物理学交叉领域的跨学科培训。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gehring, Kalle其他文献

A structural overview of the PDI family of proteins
  • DOI:
    10.1111/j.1742-4658.2010.07793.x
  • 发表时间:
    2010-10-01
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Kozlov, Guennadi;Maeaettaenen, Pekka;Gehring, Kalle
  • 通讯作者:
    Gehring, Kalle
Heat-induced dimerization of BCL-xL through α-helix swapping
  • DOI:
    10.1021/bi062080a
  • 发表时间:
    2007-01-23
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Denisov, Alexey Yu.;Sprules, Tara;Gehring, Kalle
  • 通讯作者:
    Gehring, Kalle
Concerted multi-pronged attack by calpastatin to occlude the catalytic cleft of heterodimeric calpains.
  • DOI:
    10.1038/nature07353
  • 发表时间:
    2008-11-20
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    Moldoveanu, Tudor;Gehring, Kalle;Green, Douglas R.
  • 通讯作者:
    Green, Douglas R.
Structural basis of substrate recognition and specificity in the N-end rule pathway
  • DOI:
    10.1038/nsmb.1894
  • 发表时间:
    2010-10-01
  • 期刊:
  • 影响因子:
    16.8
  • 作者:
    Matta-Camacho, Edna;Kozlov, Guennadi;Gehring, Kalle
  • 通讯作者:
    Gehring, Kalle
Protein quality control in the ER: The recognition of misfolded proteins
  • DOI:
    10.1016/j.semcdb.2010.03.006
  • 发表时间:
    2010-07-01
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Maattanen, Pekka;Gehring, Kalle;Thomas, David Y.
  • 通讯作者:
    Thomas, David Y.

Gehring, Kalle的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gehring, Kalle', 18)}}的其他基金

Structure and Function of Bacterial CNNM Magnesium Transporters
细菌CNNM镁转运蛋白的结构和功能
  • 批准号:
    RGPIN-2020-07195
  • 财政年份:
    2022
  • 资助金额:
    $ 3.86万
  • 项目类别:
    Discovery Grants Program - Individual
Structure and Function of Bacterial CNNM Magnesium Transporters
细菌CNNM镁转运蛋白的结构和功能
  • 批准号:
    RGPIN-2020-07195
  • 财政年份:
    2021
  • 资助金额:
    $ 3.86万
  • 项目类别:
    Discovery Grants Program - Individual
Structure and Function of Bacterial CNNM Magnesium Transporters
细菌CNNM镁转运蛋白的结构和功能
  • 批准号:
    RGPIN-2020-07195
  • 财政年份:
    2020
  • 资助金额:
    $ 3.86万
  • 项目类别:
    Discovery Grants Program - Individual
Protein folding in the endoplasmic reticulum
内质网中的蛋白质折叠
  • 批准号:
    RGPIN-2014-04686
  • 财政年份:
    2018
  • 资助金额:
    $ 3.86万
  • 项目类别:
    Discovery Grants Program - Individual
Protein folding in the endoplasmic reticulum
内质网中的蛋白质折叠
  • 批准号:
    RGPIN-2014-04686
  • 财政年份:
    2017
  • 资助金额:
    $ 3.86万
  • 项目类别:
    Discovery Grants Program - Individual
NSERC CREATE Training Program in Bionanomachines
NSERC CREATE 生物纳米机器培训计划
  • 批准号:
    397948-2011
  • 财政年份:
    2016
  • 资助金额:
    $ 3.86万
  • 项目类别:
    Collaborative Research and Training Experience
NSERC CREATE Training Program in Bionanomachines
NSERC CREATE 生物纳米机器培训计划
  • 批准号:
    397948-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 3.86万
  • 项目类别:
    Collaborative Research and Training Experience
Protein folding in the endoplasmic reticulum
内质网中的蛋白质折叠
  • 批准号:
    RGPIN-2014-04686
  • 财政年份:
    2015
  • 资助金额:
    $ 3.86万
  • 项目类别:
    Discovery Grants Program - Individual
Protein folding in the endoplasmic reticulum
内质网中的蛋白质折叠
  • 批准号:
    RGPIN-2014-04686
  • 财政年份:
    2014
  • 资助金额:
    $ 3.86万
  • 项目类别:
    Discovery Grants Program - Individual
NSERC CREATE Training Program in Bionanomachines
NSERC CREATE 生物纳米机器培训计划
  • 批准号:
    397948-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 3.86万
  • 项目类别:
    Collaborative Research and Training Experience

相似国自然基金

柔性锂离子电池卷绕折叠式刚柔复合结构的力学设计和性能分析
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
新型折叠式、模块化声子晶体静力学和动力学性能的“可编程”机理研究
  • 批准号:
    11872046
  • 批准年份:
    2018
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
折叠式三维金属/介质复合结构的加工方法及光学调控特性研究
  • 批准号:
    11504414
  • 批准年份:
    2015
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
基于折叠式电场的聚合物基可拉伸导体的制备及导电特性研究
  • 批准号:
    51503061
  • 批准年份:
    2015
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
折叠式人工玻璃体原位交联水凝胶重建自然玻璃体的实验研究
  • 批准号:
    81271008
  • 批准年份:
    2012
  • 资助金额:
    70.0 万元
  • 项目类别:
    面上项目

相似海外基金

Applying Spatial Covariance to Understand Human Variation in Genetic Disease
应用空间协方差来了解遗传疾病的人类变异
  • 批准号:
    10734426
  • 财政年份:
    2023
  • 资助金额:
    $ 3.86万
  • 项目类别:
Immunometabolic Programs Controlled by ER Stress in Cancer
癌症中内质网应激控制的免疫代谢程序
  • 批准号:
    10713279
  • 财政年份:
    2023
  • 资助金额:
    $ 3.86万
  • 项目类别:
Elucidating the Role and Regulation of Proteostasis in Hepatic Fibrogenesis
阐明蛋白质稳态在肝纤维形成中的作用和调节
  • 批准号:
    10718882
  • 财政年份:
    2023
  • 资助金额:
    $ 3.86万
  • 项目类别:
Understanding GABAA receptor protein folding and misfolding
了解 GABAA 受体蛋白折叠和错误折叠
  • 批准号:
    10744869
  • 财政年份:
    2023
  • 资助金额:
    $ 3.86万
  • 项目类别:
Nuclear speckle liquid-liquid phase separation dynamics in senescence and aging
衰老和衰老过程中的核散斑液-液相分离动力学
  • 批准号:
    10604564
  • 财政年份:
    2023
  • 资助金额:
    $ 3.86万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了