Biomimetic Micro/Nano-structured Adhesive Materials with “Smart” Properties

具有“智能”特性的仿生微/纳米结构粘合材料

基本信息

  • 批准号:
    RGPIN-2014-04663
  • 负责人:
  • 金额:
    $ 2.55万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2016
  • 资助国家:
    加拿大
  • 起止时间:
    2016-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

With the rapidly growing demand to miniaturize machines and maximize their performance density, the effective adhesion and/or joining of similar and dissimilar material components has become one of the most critical technical prerequisites for manufacturing biosensors, medical devices, microelectronics and many other technologies at ever-smaller scales, where other means of materials joining (e.g., bolts-nuts, fastening, welding) do not work effectively. The proposed program of research aims at the development of biomimetic micro and nano-structured adhesive materials with smart properties for next-generation advanced materials and manufacturing processes. Inspired by the superior properties and structures of biological systems, such as lotus superhydrophobic anti-adhesive leaves and gecko adhesive toe pads, in the current Discovery Grant program, my research team has developed several generations of biomimetic micro-structures and used them to tailor adhesion and associated interfacial phenomena, such as wetting, deformation, and cracking at interface between materials. We also developed various nanoscale materials and acquired a deep understanding of viscoelastic behavior of polymer adhesives and nanoscale surface interactions. Building on the previous successes, the proposed program will further develop this exciting biomimetic field by extending recent advances in nanotechnology and nanoscience to develop a new generation of biomimetic adhesives with multifunctional "smart" properties. Based on our own research findings and literature reports, we have developed a new concept of using functional nanocomposite materials in the biomimetic adhesive structures; the interplay among the electrically conductive nanofillers and their interaction with the polymer matrix will make the nanocomposite biomimetic adhesive structures possible to deliver multifunctional “smart” properties. A nice niche of application of our adhesive research in electronic manufactures has been established. We will focus on such smartness as electrical conductivity, piezoelectric responses and adhesion adaptation. Nanoscale functional fillers (e.g. silver) will be incorporated into the biomimetic structures to make them electrically conductive so as to deliver such “smart” functions as piezoelectric and sensing properties to adhesive materials. These smart biomimetic structures will be functionalized with advanced chemistry to make it have adaptable adhesion to challenging surfaces. For example, Geckos are well adapted to both dry and wet conditions; but current gecko mimics lack this adaptability and limits its applications in humid and wet conditions. Under the proposed project, new types of hydrogel-like thin films will be synthesized and utilized to functionalize the adhesive structures so that they can have the desired adaptable adhesion properties. Similar to surface proteins on the gecko foot pad, the surface polymer gel have the ability to response to changes in environmental conditions. Furthermore, this research will explore ways to transfer the developed technology and mechanistic understanding into effective adhesion and bonding processes used in biological and mechanical systems’ applications. Overall, the proposed research program is at the forefront of the field of bionanomaterials and provides excellent training opportunities for graduate students. The planned research activities are original and innovative, likely leading to revolutionary advances that will have a broad impact to the scientific community. This program will help maintain the competitive advantage of Canadian scientific community and manufacturing industries and benefit mankind as well.
随着对机器小型化和性能密度最大化的需求迅速增长,相似和不同材料组件的有效粘合和/或连接已成为制造生物传感器、医疗设备、微电子和许多其他技术的最关键的技术先决条件之一-较小的规模,其他材料连接方式(例如螺栓螺母、紧固、焊接)无法有效发挥作用。拟议的研究计划旨在开发仿生微型和连接材料。具有智能特性的纳米结构粘合材料,适用于下一代先进材料和制造工艺,受到生物系统卓越特性和结构的启发,例如莲花超疏水防粘叶子和壁虎粘合脚趾垫,在当前的发现资助计划中,我的研究团队开发了几代仿生微结构,并用它们来定制粘附和相关的界面现象,例如材料之间界面的润湿、变形和裂纹。材料并对聚合物粘合剂的粘弹性行为和纳米级表面相互作用有了深入的了解,在之前的成功基础上,拟议的计划将通过扩展纳米技术和纳米科学的最新进展,进一步开发这一令人兴奋的仿生领域,以开发新一代仿生粘合剂。多功能“智能”属性。 基于我们自己的研究成果和文献报告,我们开发了一种在仿生粘合结构中使用功能性纳米复合材料的新概念;导电纳米填料之间的相互作用以及它们与聚合物基体的相互作用将使纳米复合仿生粘合结构成为可能。我们的粘合剂研究在电子制造中的良好应用已经建立,我们将重点关注导电性、压电响应和纳米级粘合适应性等智能性。功能性填料(例如银)将被纳入仿生结构中,使其具有导电性,从而为粘合材料提供压电和传感特性等“智能”功能。这些智能仿生结构将通过先进的化学功能进行功能化,使其具有例如,壁虎能够很好地适应干燥和潮湿的条件;但目前的壁虎模仿品缺乏这种适应性,限制了其在潮湿和潮湿条件下的应用。将合成新型水凝胶状薄膜,并将其用于粘合结构的功能化,使其具有所需的适应性粘合性能,与壁虎足垫上的表面蛋白质类似,表面聚合物凝胶具有响应变化的能力。此外,这项研究将探索如何将已开发的技术和机械理解转化为生物和机械系统应用中的有效粘附和粘合过程。总体而言,拟议的研究计划处于生物纳米材料和领域的前沿。提供为研究生提供良好的培训机会。计划中的研究活动具有原创性和创新性,可能会带来革命性的进步,对科学界产生广泛的影响,该计划将有助于保持加拿大科学界和制造业的竞争优势,造福人类。以及。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhao, Boxin其他文献

A hybrid material that reversibly switches between two stable solid states
  • DOI:
    10.1038/s41563-019-0434-0
  • 发表时间:
    2019-08-01
  • 期刊:
  • 影响因子:
    41.2
  • 作者:
    Yang, Fut (Kuo);Cholewinski, Aleksander;Zhao, Boxin
  • 通讯作者:
    Zhao, Boxin
Highly electrically conductive adhesives using silver nanoparticle (Ag NP)-decorated graphene: the effect of NPs sintering on the electrical conductivity improvement
Triple non-covalent dynamic interactions enabled a tough and rapid room temperature self-healing elastomer for next-generation soft antennas
  • DOI:
    10.1039/d0ta06613c
  • 发表时间:
    2020-12-21
  • 期刊:
  • 影响因子:
    11.9
  • 作者:
    Si, Pengxiang;Jiang, Fan;Zhao, Boxin
  • 通讯作者:
    Zhao, Boxin
Author Correction: A Klotho-derived peptide protects against kidney fibrosis by targeting TGF-β signaling.
  • DOI:
    10.1038/s41467-022-34454-8
  • 发表时间:
    2022-11-04
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Yuan, Qian;Ren, Qian;Li, Li;Tan, Huishi;Lu, Meizhi;Tian, Yuan;Huang, Lu;Zhao, Boxin;Fu, Haiyan;Hou, Fan Fan;Zhou, Lili;Liu, Youhua
  • 通讯作者:
    Liu, Youhua
The selective effect of glycyrrhizin and glycyrrhetinic acid on topoisomerase IIα and apoptosis in combination with etoposide on triple negative breast cancer MDA-MB-231 cells
  • DOI:
    10.1016/j.ejphar.2017.05.026
  • 发表时间:
    2017-08-15
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Cai, Yun;Zhao, Boxin;Li, Guofeng
  • 通讯作者:
    Li, Guofeng

Zhao, Boxin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhao, Boxin', 18)}}的其他基金

Biomimetic "Smart" Functional Materials for Developing Soft Robotic Devices
用于开发软机器人设备的仿生“智能”功能材料
  • 批准号:
    RGPIN-2019-04650
  • 财政年份:
    2022
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Biomimetic "Smart" Functional Materials for Developing Soft Robotic Devices
用于开发软机器人设备的仿生“智能”功能材料
  • 批准号:
    RGPIN-2019-04650
  • 财政年份:
    2021
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Biomimetic "Smart" Functional Materials for Developing Soft Robotic Devices
用于开发软机器人设备的仿生“智能”功能材料
  • 批准号:
    RGPAS-2019-00115
  • 财政年份:
    2020
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Biomimetic "Smart" Functional Materials for Developing Soft Robotic Devices
用于开发软机器人设备的仿生“智能”功能材料
  • 批准号:
    RGPIN-2019-04650
  • 财政年份:
    2020
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Biomimetic "Smart" Functional Materials for Developing Soft Robotic Devices
用于开发软机器人设备的仿生“智能”功能材料
  • 批准号:
    RGPIN-2019-04650
  • 财政年份:
    2019
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Biomimetic "Smart" Functional Materials for Developing Soft Robotic Devices
用于开发软机器人设备的仿生“智能”功能材料
  • 批准号:
    RGPAS-2019-00115
  • 财政年份:
    2019
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Biomimetic Micro/Nano-structured Adhesive Materials with "Smart" Properties
具有“智能”特性的仿生微纳结构粘合材料
  • 批准号:
    RGPIN-2014-04663
  • 财政年份:
    2018
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Biomimetic Micro/Nano-structured Adhesive Materials with “Smart” Properties
具有“智能”特性的仿生微/纳米结构粘合材料
  • 批准号:
    RGPIN-2014-04663
  • 财政年份:
    2017
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Hyper-Frequency Viscoelastic Spectroscopy for Advanced Composites and Biomaterials
先进复合材料和生物材料的高频粘弹性光谱
  • 批准号:
    RTI-2017-00114
  • 财政年份:
    2016
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Research Tools and Instruments
Bonding studies for thermally sprayed copper alloy antimicrobial coatings
热喷涂铜合金抗菌涂层的结合研究
  • 批准号:
    478368-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Engage Plus Grants Program

相似国自然基金

模块化自由装配微流控模型辅助蛋白冠介导脑靶向纳米胶束构建及机制研究
  • 批准号:
    22378358
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
导电微针递送纳米颗粒构建个性化黑色素瘤疫苗及其抗肿瘤免疫机制研究
  • 批准号:
    52303364
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多模式微纳米马达系统及集群溶栓动力学机制研究
  • 批准号:
    62375114
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
肿瘤微环境多层次调控的功能化纳米佐剂用于增强膀胱癌放疗疗效的机制研究
  • 批准号:
    82303571
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于微流控纳米微腔芯片的胃癌单外泌体miRNA/CRISPR检测新方法研究
  • 批准号:
    62371293
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Biomimetic Micro/Nano-structured Adhesive Materials with "Smart" Properties
具有“智能”特性的仿生微纳结构粘合材料
  • 批准号:
    RGPIN-2014-04663
  • 财政年份:
    2018
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Biomimetic Micro/Nano-structured Adhesive Materials with “Smart” Properties
具有“智能”特性的仿生微/纳米结构粘合材料
  • 批准号:
    RGPIN-2014-04663
  • 财政年份:
    2017
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
Micro- and nanofiber enabled biomimetic periosteum for bone repair and reconstruction
微米和纳米纤维仿生骨膜用于骨修复和重建
  • 批准号:
    9026932
  • 财政年份:
    2016
  • 资助金额:
    $ 2.55万
  • 项目类别:
Micro- and nanofiber enabled biomimetic periosteum for bone repair and reconstruction
微米和纳米纤维仿生骨膜用于骨修复和重建
  • 批准号:
    9755362
  • 财政年份:
    2016
  • 资助金额:
    $ 2.55万
  • 项目类别:
Biomimetic Micro/Nano-structured Adhesive Materials with "Smart" Properties
具有“智能”特性的仿生微纳结构粘合材料
  • 批准号:
    RGPIN-2014-04663
  • 财政年份:
    2015
  • 资助金额:
    $ 2.55万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了