Biomimetic Micro/Nano-structured Adhesive Materials with "Smart" Properties
具有“智能”特性的仿生微纳结构粘合材料
基本信息
- 批准号:RGPIN-2014-04663
- 负责人:
- 金额:$ 2.55万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With the rapidly growing demand to miniaturize machines and maximize their performance density, the effective adhesion and/or joining of similar and dissimilar material components has become one of the most critical technical prerequisites for manufacturing biosensors, medical devices, microelectronics and many other technologies at ever-smaller scales, where other means of materials joining (e.g., bolts-nuts, fastening, welding) do not work effectively. The proposed program of research aims at the development of biomimetic micro and nano-structured adhesive materials with smart properties for next-generation advanced materials and manufacturing processes. Inspired by the superior properties and structures of biological systems, such as lotus superhydrophobic anti-adhesive leaves and gecko adhesive toe pads, in the current Discovery Grant program, my research team has developed several generations of biomimetic micro-structures and used them to tailor adhesion and associated interfacial phenomena, such as wetting, deformation, and cracking at interface between materials. We also developed various nanoscale materials and acquired a deep understanding of viscoelastic behavior of polymer adhesives and nanoscale surface interactions. Building on the previous successes, the proposed program will further develop this exciting biomimetic field by extending recent advances in nanotechnology and nanoscience to develop a new generation of biomimetic adhesives with multifunctional "smart" properties. **Based on our own research findings and literature reports, we have developed a new concept of using functional nanocomposite materials in the biomimetic adhesive structures; the interplay among the electrically conductive nanofillers and their interaction with the polymer matrix will make the nanocomposite biomimetic adhesive structures possible to deliver multifunctional "smart" properties. A nice niche of application of our adhesive research in electronic manufactures has been established. We will focus on such smartness as electrical conductivity, piezoelectric responses and adhesion adaptation. Nanoscale functional fillers (e.g. silver) will be incorporated into the biomimetic structures to make them electrically conductive so as to deliver such "smart" functions as piezoelectric and sensing properties to adhesive materials. These smart biomimetic structures will be functionalized with advanced chemistry to make it have adaptable adhesion to challenging surfaces. For example, Geckos are well adapted to both dry and wet conditions; but current gecko mimics lack this adaptability and limits its applications in humid and wet conditions. Under the proposed project, new types of hydrogel-like thin films will be synthesized and utilized to functionalize the adhesive structures so that they can have the desired adaptable adhesion properties. Similar to surface proteins on the gecko foot pad, the surface polymer gel have the ability to response to changes in environmental conditions. Furthermore, this research will explore ways to transfer the developed technology and mechanistic understanding into effective adhesion and bonding processes used in biological and mechanical systems' applications. Overall, the proposed research program is at the forefront of the field of bionanomaterials and provides excellent training opportunities for graduate students. The planned research activities are original and innovative, likely leading to revolutionary advances that will have a broad impact to the scientific community. This program will help maintain the competitive advantage of Canadian scientific community and manufacturing industries and benefit mankind as well.
With the rapidly growing demand to miniaturize machines and maximize their performance density, the effective adhesion and/or joining of similar and dissimilar material components has become one of the most critical technical prerequisites for manufacturing biosensors, medical devices, microelectronics and many other technologies at ever-smaller scales, where other means of materials joining (e.g., bolts-nuts, fastening, welding) do not work 有效地。拟议的研究计划旨在开发具有智能特性的仿生微型和纳米结构的粘合剂材料,用于下一代高级材料和制造过程。 受到生物系统的优越特性和结构的启发,例如莲花超疏水性抗粘着叶子和壁虎粘合剂脚趾垫,在当前的发现赠款计划中,我的研究团队开发了几代生物模拟的微型结构,并使用它们用于定制材料和相关的界面现象,例如湿润的材料,并在材料上进行差异化,并在材料上进行了差异,并进行了分裂,并进行了分裂,并进行了裂纹。我们还开发了各种纳米级材料,并对聚合物粘合剂和纳米级表面相互作用的粘弹性行为有了深刻的了解。在先前的成功基础上,该计划将通过扩展纳米技术和纳米科学的最新进展,从而进一步发展这个令人兴奋的仿生领域,从而开发新一代具有多功能“智能”特性的仿生粘合剂。 **根据我们自己的研究发现和文献报告,我们开发了一种新的概念,该概念是在仿生粘合剂结构中使用功能性纳米复合材料。导电纳米填料及其与聚合物基质的相互作用之间的相互作用将使纳米复合仿生粘合剂结构可能提供多功能“智能”特性。已经建立了我们在电子制造中使用粘合剂研究的很好的利基。我们将专注于诸如电导率,压电反应和粘附适应等智能。纳米级功能填充剂(例如银)将被纳入仿生结构中,以使它们具有导电性,从而使诸如压电和传感特性这样的“智能”功能为粘合剂材料提供。这些智能的仿生结构将通过高级化学功能化,以使其具有适应性的表面粘附。例如,壁虎很好地适应了干燥和潮湿的条件。但是当前的壁虎模仿缺乏这种适应性,并限制了其在潮湿和潮湿条件下的应用。在拟议的项目下,将合成并利用新型的水凝胶样薄膜,以使粘合剂结构功能化,以便它们具有所需的适应性粘附性能。与壁虎足垫上的表面蛋白相似,表面聚合物凝胶具有对环境条件变化的反应。此外,这项研究将探索将开发的技术和机械理解转移到生物学和机械系统应用中使用的有效粘附和粘结过程中的方法。总体而言,拟议的研究计划位于Bionanomatials领域的最前沿,并为研究生提供了极好的培训机会。计划中的研究活动是原始的和创新的,可能导致革命进步,这将对科学界产生广泛的影响。该计划将有助于维持加拿大科学界和制造业的竞争优势,并使人类受益。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhao, Boxin其他文献
A hybrid material that reversibly switches between two stable solid states
- DOI:
10.1038/s41563-019-0434-0 - 发表时间:
2019-08-01 - 期刊:
- 影响因子:41.2
- 作者:
Yang, Fut (Kuo);Cholewinski, Aleksander;Zhao, Boxin - 通讯作者:
Zhao, Boxin
Highly electrically conductive adhesives using silver nanoparticle (Ag NP)-decorated graphene: the effect of NPs sintering on the electrical conductivity improvement
- DOI:
10.1007/s10854-014-2440-y - 发表时间:
2015-01-01 - 期刊:
- 影响因子:2.8
- 作者:
Amoli, Behnam Meschi;Trinidad, Josh;Zhao, Boxin - 通讯作者:
Zhao, Boxin
Triple non-covalent dynamic interactions enabled a tough and rapid room temperature self-healing elastomer for next-generation soft antennas
- DOI:
10.1039/d0ta06613c - 发表时间:
2020-12-21 - 期刊:
- 影响因子:11.9
- 作者:
Si, Pengxiang;Jiang, Fan;Zhao, Boxin - 通讯作者:
Zhao, Boxin
Author Correction: A Klotho-derived peptide protects against kidney fibrosis by targeting TGF-β signaling.
- DOI:
10.1038/s41467-022-34454-8 - 发表时间:
2022-11-04 - 期刊:
- 影响因子:16.6
- 作者:
Yuan, Qian;Ren, Qian;Li, Li;Tan, Huishi;Lu, Meizhi;Tian, Yuan;Huang, Lu;Zhao, Boxin;Fu, Haiyan;Hou, Fan Fan;Zhou, Lili;Liu, Youhua - 通讯作者:
Liu, Youhua
The selective effect of glycyrrhizin and glycyrrhetinic acid on topoisomerase IIα and apoptosis in combination with etoposide on triple negative breast cancer MDA-MB-231 cells
- DOI:
10.1016/j.ejphar.2017.05.026 - 发表时间:
2017-08-15 - 期刊:
- 影响因子:5
- 作者:
Cai, Yun;Zhao, Boxin;Li, Guofeng - 通讯作者:
Li, Guofeng
Zhao, Boxin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhao, Boxin', 18)}}的其他基金
Biomimetic "Smart" Functional Materials for Developing Soft Robotic Devices
用于开发软机器人设备的仿生“智能”功能材料
- 批准号:
RGPIN-2019-04650 - 财政年份:2022
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Biomimetic "Smart" Functional Materials for Developing Soft Robotic Devices
用于开发软机器人设备的仿生“智能”功能材料
- 批准号:
RGPIN-2019-04650 - 财政年份:2021
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Biomimetic "Smart" Functional Materials for Developing Soft Robotic Devices
用于开发软机器人设备的仿生“智能”功能材料
- 批准号:
RGPAS-2019-00115 - 财政年份:2020
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Biomimetic "Smart" Functional Materials for Developing Soft Robotic Devices
用于开发软机器人设备的仿生“智能”功能材料
- 批准号:
RGPIN-2019-04650 - 财政年份:2020
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Biomimetic "Smart" Functional Materials for Developing Soft Robotic Devices
用于开发软机器人设备的仿生“智能”功能材料
- 批准号:
RGPIN-2019-04650 - 财政年份:2019
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Biomimetic "Smart" Functional Materials for Developing Soft Robotic Devices
用于开发软机器人设备的仿生“智能”功能材料
- 批准号:
RGPAS-2019-00115 - 财政年份:2019
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Biomimetic Micro/Nano-structured Adhesive Materials with “Smart” Properties
具有“智能”特性的仿生微/纳米结构粘合材料
- 批准号:
RGPIN-2014-04663 - 财政年份:2017
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Hyper-Frequency Viscoelastic Spectroscopy for Advanced Composites and Biomaterials
先进复合材料和生物材料的高频粘弹性光谱
- 批准号:
RTI-2017-00114 - 财政年份:2016
- 资助金额:
$ 2.55万 - 项目类别:
Research Tools and Instruments
Biomimetic Micro/Nano-structured Adhesive Materials with “Smart” Properties
具有“智能”特性的仿生微/纳米结构粘合材料
- 批准号:
RGPIN-2014-04663 - 财政年份:2016
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Bonding studies for thermally sprayed copper alloy antimicrobial coatings
热喷涂铜合金抗菌涂层的结合研究
- 批准号:
478368-2015 - 财政年份:2015
- 资助金额:
$ 2.55万 - 项目类别:
Engage Plus Grants Program
相似国自然基金
仿生构建多酶复合纳米凝胶反应器用于重塑慢性伤口微环境
- 批准号:52303185
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肿瘤微环境响应性仿生纳米材料用于三阴性乳腺癌的时空可控预靶向放射性核素治疗
- 批准号:82302246
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
木质素微/纳米球仿生构建超疏水光热涂层及其对防除冰增效机制
- 批准号:32371813
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
感染微环境响应纳米酶反应器的构筑及其仿生催化抗尿路致病菌的研究
- 批准号:32371407
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
血小板基仿生纳米粒改善微环境增效血管内皮损伤修复的基础研究
- 批准号:82302164
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Biomimetic Micro/Nano-structured Adhesive Materials with “Smart” Properties
具有“智能”特性的仿生微/纳米结构粘合材料
- 批准号:
RGPIN-2014-04663 - 财政年份:2017
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Micro- and nanofiber enabled biomimetic periosteum for bone repair and reconstruction
微米和纳米纤维仿生骨膜用于骨修复和重建
- 批准号:
9026932 - 财政年份:2016
- 资助金额:
$ 2.55万 - 项目类别:
Micro- and nanofiber enabled biomimetic periosteum for bone repair and reconstruction
微米和纳米纤维仿生骨膜用于骨修复和重建
- 批准号:
9755362 - 财政年份:2016
- 资助金额:
$ 2.55万 - 项目类别:
Biomimetic Micro/Nano-structured Adhesive Materials with “Smart” Properties
具有“智能”特性的仿生微/纳米结构粘合材料
- 批准号:
RGPIN-2014-04663 - 财政年份:2016
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Biomimetic Micro/Nano-structured Adhesive Materials with "Smart" Properties
具有“智能”特性的仿生微纳结构粘合材料
- 批准号:
RGPIN-2014-04663 - 财政年份:2015
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual