Exploiting nanogap electrodes to probe single nanoparticles, fashion interference-based magnetoresistive materials and develop an electronic surface-dielectric spectroscopy
利用纳米间隙电极探测单个纳米粒子,形成基于干扰的磁阻材料并开发电子表面介电光谱
基本信息
- 批准号:217189-2010
- 负责人:
- 金额:$ 2.91万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2014
- 资助国家:加拿大
- 起止时间:2014-01-01 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research will advance nanoscale electronics on three interrelated fronts. 1) Since nanostructures are so small, interrogating their electrical properties is challenging. One common way to do this is by incorporating nanostructures in nanometer-sized gaps fashioned in thin (granular) films. The Dhirani group has observed that these widely used devices exhibit two curious phenomena: they yield anomalous values of energy levels of nanostructures and, even without nanostructures incorporated, they tend to exhibit an "extra" resistance to current flow at low voltages. Resolving these issues can lead to an improved understanding of charge flow in these nanoprobes and in nanostructures generally. The latter impacts many areas of interest in cutting edge electronics, ranging from studies of molecular electronics to improved efficiencies for nanostructured solar cells. 2) Electron Interference: There is an emerging idea in materials science that nanostructures may be used as "artificial atoms" to make new types of "artificial materials" with "designer" properties. The applicant has provided a vivid demonstration. A decade ago, granular materials were predicted to possess resistance that oscillated with voltage and magnetic field, a prediction that was confirmed for the first time by the applicant's group - thanks to their use of "artificial materials". In a new series of experiments, the applicant's group will control and, indeed, harness this effect by using nanoshells as material building blocks in order to make the effect even more pronounced. Such a demonstration would represent a coup for nano- and material sciences as it demonstrates fabricating a new material with properties engineered from the bottom-up. 3) Dielectric Sensing: Using lessons learned from the above-mentioned fundamental studies of nanoparticle films, the applicant's group has fabricated a new type of electronics-based chemical detector. One of the goals of this proposal is to better understand the workings of these detectors. Nano-science can indeed be fertile ground for exciting new nanotechnology: chemical detectors are ubiquitous in chemical industries, pharmaceutical companies, biomedical labs, environmental labs, in biosensors for medical diagnostics, drug evaluation, etc.
这项研究将在三个相互关联的领域推进纳米级电子学的发展。 1)由于纳米结构非常小,因此询问其电性能具有挑战性。 一种常见的方法是将纳米结构纳入薄膜(颗粒)形成的纳米尺寸间隙中。 Dhirani 小组观察到,这些广泛使用的器件表现出两种奇怪的现象:它们产生纳米结构能级的异常值,并且即使没有结合纳米结构,它们也往往在低电压下表现出对电流的“额外”阻力。 解决这些问题可以更好地理解这些纳米探针和纳米结构中的电荷流。 后者影响了尖端电子学的许多领域,从分子电子学研究到提高纳米结构太阳能电池的效率。 2)电子干扰:材料科学中有一个新兴的想法,即纳米结构可以用作“人造原子”,以制造具有“设计”特性的新型“人造材料”。申请人提供了生动的演示。 十年前,人们预测颗粒材料具有随电压和磁场振荡的电阻,由于使用了“人造材料”,申请人的团队首次证实了这一预测。 在一系列新的实验中,申请人的团队将通过使用纳米壳作为材料构建块来控制并实际上利用这种效应,以使该效应更加明显。 这样的演示将代表纳米和材料科学的一次妙招,因为它展示了制造一种具有自下而上设计特性的新材料。 3)介电传感:利用上述纳米粒子薄膜基础研究的经验教训,申请人的团队制造了一种新型的基于电子的化学探测器。 该提案的目标之一是更好地了解这些探测器的工作原理。 纳米科学确实可以成为令人兴奋的新纳米技术的沃土:化学探测器在化学工业、制药公司、生物医学实验室、环境实验室、用于医学诊断、药物评估的生物传感器等中无处不在。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dhirani, AlAmin其他文献
Dhirani, AlAmin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dhirani, AlAmin', 18)}}的其他基金
Opto/electronic studies and applications of nano-engineered 2-dimensional materials
纳米工程二维材料的光电研究与应用
- 批准号:
RGPIN-2020-06244 - 财政年份:2022
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Opto/electronic studies and applications of nano-engineered 2-dimensional materials
纳米工程二维材料的光电研究与应用
- 批准号:
RGPIN-2020-06244 - 财政年份:2021
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Opto/electronic studies and applications of nano-engineered 2-dimensional materials
纳米工程二维材料的光电研究与应用
- 批准号:
RGPIN-2020-06244 - 财政年份:2020
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Fundamentals and applications of quantum electronics: exploring an exotic quantum state in nanostructured materials and exploiting know how for new analytical chemical detectors
量子电子学的基础和应用:探索纳米结构材料中的奇异量子态并利用新型分析化学探测器的专业知识
- 批准号:
RGPIN-2015-04606 - 财政年份:2019
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Fundamentals and applications of quantum electronics: exploring an exotic quantum state in nanostructured materials and exploiting know how for new analytical chemical detectors
量子电子学的基础和应用:探索纳米结构材料中的奇异量子态并利用新型分析化学探测器的专业知识
- 批准号:
RGPIN-2015-04606 - 财政年份:2018
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Fundamentals and applications of quantum electronics: exploring an exotic quantum state in nanostructured materials and exploiting know how for new analytical chemical detectors
量子电子学的基础和应用:探索纳米结构材料中的奇异量子态并利用新型分析化学探测器的专业知识
- 批准号:
RGPIN-2015-04606 - 财政年份:2017
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Fundamentals and applications of quantum electronics: exploring an exotic quantum state in nanostructured materials and exploiting know how for new analytical chemical detectors
量子电子学的基础和应用:探索纳米结构材料中的奇异量子态并利用新型分析化学探测器的专业知识
- 批准号:
RGPIN-2015-04606 - 财政年份:2016
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Fundamentals and applications of quantum electronics: exploring an exotic quantum state in nanostructured materials and exploiting know how for new analytical chemical detectors
量子电子学的基础和应用:探索纳米结构材料中的奇异量子态并利用新型分析化学探测器的专业知识
- 批准号:
RGPIN-2015-04606 - 财政年份:2015
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Improving efficiency of water analysis by ion chromatography
提高离子色谱法水分析的效率
- 批准号:
468233-2014 - 财政年份:2014
- 资助金额:
$ 2.91万 - 项目类别:
Engage Grants Program
Exploiting nanogap electrodes to probe single nanoparticles, fashion interference-based magnetoresistive materials and develop an electronic surface-dielectric spectroscopy
利用纳米间隙电极探测单个纳米粒子,形成基于干扰的磁阻材料并开发电子表面介电光谱
- 批准号:
217189-2010 - 财政年份:2013
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
高倍率、长寿命Sn基宽间隙阵列型纳米多孔电极的快速成形与表面构型诱导应力缓冲机制
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
辅助阿尔茨海默症早期诊断的纳米间隙电极生物传感器研究
- 批准号:52005063
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
基于非对称纳米间隙电极的二维热电子光探测器研究
- 批准号:61705065
- 批准年份:2017
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
功能化的纳米间隙电极及其在低浓度乙烯快速检测中的应用
- 批准号:31571567
- 批准年份:2015
- 资助金额:62.0 万元
- 项目类别:面上项目
石墨烯纳米间隙电极的构筑及其在光探测器中的应用
- 批准号:51402080
- 批准年份:2014
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Optogenetics-inspired photoelectric memories based on flexible nanogap electrodes
基于柔性纳米间隙电极的光遗传学启发光电存储器
- 批准号:
MR/V024442/1 - 财政年份:2021
- 资助金额:
$ 2.91万 - 项目类别:
Fellowship
Development of gas sensors using nanogap electrodes
使用纳米间隙电极的气体传感器的开发
- 批准号:
20K05263 - 财政年份:2020
- 资助金额:
$ 2.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Nanogap electrodes for catalyzing redox reactions
用于催化氧化还原反应的纳米间隙电极
- 批准号:
509637-2017 - 财政年份:2017
- 资助金额:
$ 2.91万 - 项目类别:
University Undergraduate Student Research Awards
Atomic scale and dynamic analysis of nanogap electrodes interacting with gas molecules
纳米间隙电极与气体分子相互作用的原子尺度和动态分析
- 批准号:
25246003 - 财政年份:2013
- 资助金额:
$ 2.91万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Exploiting nanogap electrodes to probe single nanoparticles, fashion interference-based magnetoresistive materials and develop an electronic surface-dielectric spectroscopy
利用纳米间隙电极探测单个纳米粒子,形成基于干扰的磁阻材料并开发电子表面介电光谱
- 批准号:
217189-2010 - 财政年份:2013
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual