Optimal compressive sensing systems for signal acquisition, reconstruction and processing
用于信号采集、重建和处理的最佳压缩传感系统
基本信息
- 批准号:4062-2011
- 负责人:
- 金额:$ 2.33万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2014
- 资助国家:加拿大
- 起止时间:2014-01-01 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In a nutshell, a compressive sensing (CS) system acquires a signal of interest indirectly by correcting a small number of its "projections" rather than evenly sampling it at the so-called Nyquist rate which can be prohibitively high for broadband signals encountered in many applications. This new signal acquisition paradigm has revolutionized the way digital data are traditionally acquired. The objectives of the proposed research are threefold. First, we aim at developing optimal CS systems that require fewer-than-ever number of measurements that yet contain complete information of the data. This entails reduced number of sensing devices (or lower software complexity in the case of software implementation), hence improving processing efficiency and reducing cost. This goal will be achieved by exploring and maximizing a new measure for the incoherence between the measurement subsystem and an overcomplete dictionary for sparse representation of signals. Second, we investigate new methods to recover the data of interest from the limited number of measurements with better accuracy relative to existing algorithms. Our interest is in large-scale data, hence we must develop fast algorithms for them to be useful in real-time data processing. To this end, we shall develop a class of proximal-gradient algorithms for solving Lp type (with p < 1) mixed convex-nonconvex problems. Third, the algorithms developed are to be applied to problems in digital signal processing such as de- nosing, de-blurring and segmentation in medical imaging and communications such as wireless channel estimation and message recovery problems. These problems are current, significant and technically challenging in their respective fields either because of their involvement in large amount of data (medical imaging) or because of their real-time nature (wireless communication applications). The information processing communities will regard our research endeavors as significant when the proposed algorithms begin to play a crucial role in solving these and other related problems with satisfactory processing speed and performance.
简而申请。这种新的信号获取范式彻底改变了传统上获取数字数据的方式。拟议研究的目标是三倍。首先,我们旨在开发最佳的CS系统,这些系统需要较少的测量数量,但其中包含数据的完整信息。这需要减少的传感设备(或在软件实施的情况下降低软件复杂性),从而提高处理效率并降低成本。通过探索和最大化测量子系统与稀疏表示信号的疏忽字典之间的不一致的新措施来实现此目标。其次,我们研究了从有限数量的测量数据中恢复感兴趣数据的新方法,相对于现有算法,其精度更好。我们的兴趣是大规模数据,因此我们必须开发快速算法,以便它们在实时数据处理中有用。为此,我们将开发一类用于求解LP类型(具有P <1)混合凸 - 孔孔孔问题的近端梯度算法。第三,开发的算法应应用于数字信号处理中的问题,例如在医学成像和通信中的脱位,脱毛和细分,例如无线通道估计和消息恢复问题。这些问题在各自的领域都是当前的,重要的,而且在技术上具有挑战性,要么是因为它们参与了大量数据(医学成像)或实时性质(无线通信应用)。当提出的算法开始在解决这些和其他相关的问题以令人满意的处理速度和性能方面扮演至关重要的角色时,信息处理社区将把我们的研究努力视为重要的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lu, WuSheng其他文献
Lu, WuSheng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lu, WuSheng', 18)}}的其他基金
Principal component analysis based algorithms for ECG recordings
基于主成分分析的心电图记录算法
- 批准号:
524089-2018 - 财政年份:2018
- 资助金额:
$ 2.33万 - 项目类别:
Engage Grants Program
Optimal compressive sensing systems for signal acquisition, reconstruction and processing
用于信号采集、重建和处理的最佳压缩传感系统
- 批准号:
4062-2011 - 财政年份:2017
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Optimal compressive sensing systems for signal acquisition, reconstruction and processing
用于信号采集、重建和处理的最佳压缩传感系统
- 批准号:
4062-2011 - 财政年份:2013
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Optimal compressive sensing systems for signal acquisition, reconstruction and processing
用于信号采集、重建和处理的最佳压缩传感系统
- 批准号:
4062-2011 - 财政年份:2012
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Optimal compressive sensing systems for signal acquisition, reconstruction and processing
用于信号采集、重建和处理的最佳压缩传感系统
- 批准号:
4062-2011 - 财政年份:2011
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Optimal design of high-performance low-complexity digital signal processing systems: algorithms and applications
高性能低复杂度数字信号处理系统的优化设计:算法与应用
- 批准号:
4062-2006 - 财政年份:2010
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Optimal design of high-performance low-complexity digital signal processing systems: algorithms and applications
高性能低复杂度数字信号处理系统的优化设计:算法与应用
- 批准号:
4062-2006 - 财政年份:2009
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Optimal design of high-performance low-complexity digital signal processing systems: algorithms and applications
高性能低复杂度数字信号处理系统的优化设计:算法与应用
- 批准号:
4062-2006 - 财政年份:2008
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Optimal design of high-performance low-complexity digital signal processing systems: algorithms and applications
高性能低复杂度数字信号处理系统的优化设计:算法与应用
- 批准号:
4062-2006 - 财政年份:2007
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Optimal design of high-performance low-complexity digital signal processing systems: algorithms and applications
高性能低复杂度数字信号处理系统的优化设计:算法与应用
- 批准号:
4062-2006 - 财政年份:2006
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
抗压力的神经脑肠轴机制
- 批准号:32371213
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于神经网络多因素交互作用分析的燃烧高温后花岗岩冲击抗压性能研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
探索微管机械抗压特性参与调控乳腺癌发生发展和转移的分子机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
深海螺旋柱形耐压壳抗压机理与仿生设计方法研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
基于阻抗压缩网络的宽负载范围超高频功率变换系统研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
相似海外基金
Applications of Infinite Dimensional Compressive Sensing to Multi-Dimensional Analog Images using Machine Learning to Enhance Results
利用机器学习将无限维压缩感知应用于多维模拟图像以增强结果
- 批准号:
2889834 - 财政年份:2023
- 资助金额:
$ 2.33万 - 项目类别:
Studentship
深層学習と圧縮センシングを融合した革新的超低消費電力イメージングシステムの実現
实现结合深度学习和压缩感知的创新超低功耗成像系统
- 批准号:
22K12101 - 财政年份:2022
- 资助金额:
$ 2.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Hyperspectral Compressive Sensing Spectrometer for Adult Neuromonitoring in Cardiac Surgery
用于成人心脏手术神经监测的高光谱压缩传感光谱仪
- 批准号:
DH-2022-00545 - 财政年份:2022
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Horizons
Compressive sensing-based sparse transducers for ultrasound imaging
用于超声成像的基于压缩传感的稀疏换能器
- 批准号:
RGPIN-2020-07053 - 财政年份:2022
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Grants Program - Individual
Synergistic Inverse Problems Omni-Solver for Expeditious High Quality Multimodal Cardiovascular MRI via Deep Compressive Sensing and Data Coalescing
协同逆问题 Omni-Solver 通过深度压缩传感和数据合并实现快速高质量多模态心血管 MRI
- 批准号:
MR/V023799/1 - 财政年份:2021
- 资助金额:
$ 2.33万 - 项目类别:
Fellowship