Implicit function Theorem in a non-Archimedean setting

非阿基米德设置中的隐函数定理

基本信息

  • 批准号:
    383770-2009
  • 负责人:
  • 金额:
    $ 0.33万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    University Undergraduate Student Research Awards
  • 财政年份:
    2009
  • 资助国家:
    加拿大
  • 起止时间:
    2009-01-01 至 2010-12-31
  • 项目状态:
    已结题

项目摘要

No summary - Aucun sommaire
没有总结 - Aucun sommaire

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rempel, Trevor其他文献

Rempel, Trevor的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rempel, Trevor', 18)}}的其他基金

Differential geometry and representations in theoretical physics
理论物理中的微分几何和表示
  • 批准号:
    367364-2008
  • 财政年份:
    2008
  • 资助金额:
    $ 0.33万
  • 项目类别:
    University Undergraduate Student Research Awards
Search for Lorentz & CPT violating physics beyond the standard model of particle physics
寻找洛伦兹
  • 批准号:
    353770-2007
  • 财政年份:
    2007
  • 资助金额:
    $ 0.33万
  • 项目类别:
    University Undergraduate Student Research Awards

相似国自然基金

基于植物酚类生态友好型功能材料的蓝藻水华全生命周期防控与治理机制研究
  • 批准号:
    52370164
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
拟南芥TTM3在网格蛋白介导的内吞作用和极性生长素运输中功能的研究
  • 批准号:
    32370325
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
阿尔茨海默病早期认知功能下降病情演化临界预警模型研究
  • 批准号:
    82371484
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
线粒体功能损伤介导生活应激影响抑郁症发生的人群及机制研究
  • 批准号:
    82301709
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
小麦光周期基因TaCOL3-B1调控抽穗期的功能和分子机制研究
  • 批准号:
    32301789
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Creation of cognitive function assessment tools for At Risk Mental State
创建针对高危心理状态的认知功能评估工具
  • 批准号:
    23K12917
  • 财政年份:
    2023
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Understanding kinematics and physiology of ageing in swallowing function using with 3D computed tomography
使用 3D 计算机断层扫描了解吞咽功能衰老的运动学和生理学
  • 批准号:
    22K11360
  • 财政年份:
    2022
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
HIGH -SPEED AND ACCURATE AUTHENTICITY JUDGEMENT USING PHYSICALLY UNCLONABLE FUNCTION OF INKJET PRINTED CODE
利用喷码物理不可克隆功能高速准确真伪判断
  • 批准号:
    21K11939
  • 财政年份:
    2021
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Selberg's Central Limit Theorem in Function Fields
函数域中的塞尔伯格中心极限定理
  • 批准号:
    532937-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Postdoctoral Fellowships
Higher-order asymptotic analysis of nonconformal iterative function systems with infinite graphs by asymptotic theory construction of transfer operators
基于传递算子渐近理论构造的无限图非共形迭代函数系统的高阶渐近分析
  • 批准号:
    20K03636
  • 财政年份:
    2020
  • 资助金额:
    $ 0.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了