Induction of allogeneic tolerance with bioengineered thymus organoids
用生物工程胸腺类器官诱导同种异体耐受
基本信息
- 批准号:9082794
- 负责人:
- 金额:$ 38.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-01-15 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAdultAdverse effectsAgingAlloantigenAllogenicAntigensAutoantigensAutoimmune DiabetesAutoimmune DiseasesAutoimmune ProcessAutoimmunityBeta CellBiomedical EngineeringCell Culture TechniquesCell LineageCell TransplantsCellsChronicDataDevelopmentDiabetic mouseDiseaseEmbryoExtracellular MatrixGeneticGoalsGraft RejectionGrowthHomingHumanHydrogelsImmuneImmune ToleranceImmune systemImmunizationImmunosuppressive AgentsIn VitroIndividualInfectionInsulinInsulin-Dependent Diabetes MellitusInvadedInvestigationLymphocyteLymphopoiesisMajor Histocompatibility ComplexMalignant NeoplasmsModelingModificationMolecularNude MiceOrganOrgan DonorOrgan TransplantationOrganoidsOvalbuminPeptidesPharmaceutical PreparationsPharmacotherapyPopulationPopulation HeterogeneityPreventionPropertyRegenerative MedicineResearchResearch Project GrantsSelf ToleranceSignal PathwaySkin graftSolidSourceStem cellsStromal CellsStructure of beta Cell of isletSystemT-Cell DevelopmentT-LymphocyteTechniquesTechnologyThymic epithelial cellThymus GlandTranslatingTransplantationVascularizationadaptive immunityallograft rejectionautoreactive T cellbasecentral toleranceclinical applicationdesigndriving forceimprovedin vivoinnovationirradiationisletislet allograftpathogenpostnatalpreventprogenitorpublic health relevanceresearch studyresponsescaffoldskin allografttransplantation medicine
项目摘要
DESCRIPTION: Chronic rejection of allografts remains a major hurdle in organ transplantation and regenerative medicine. While immunosuppressive drugs can prevent graft rejection to a certain degree, their efficacies are limited and often associate with severe side effects. The underlying problem is that new T-cells reactive to alloantigens are continuously generated from the thymus. While numerous efforts have been made to modulate thymic function to induce donor-specific immune tolerance, manipulating the thymus proves to be difficult. One major challenge is to reproduce its unique extracellular matrix microenvironment that is critical for the
survival and function of thymic epithelial cells (TECs), the predominant population of thymic stromal cells that are essential for the development of T-cells and for defining the "immunological self" of an individual (the capability to distinguish self from non-self molecules i the body and respond accordingly). Here, we propose an innovative bioengineering approach to modulate the thymus function. We have recently developed a thymus decellularization technique, which allows us to reconstruct a functional thymus organoid de novo with isolated TECs. Athymic mice engrafted with the bioengineered thymus are able to develop strong humoral responses against model antigen ovalbumin and promptly reject skin allografts. Conversely, tolerance to allogeneic skin grafts can be achieved by transplanting thymus organoids co-expressing both donor and recipient's major histocompatibility complex (MHC) molecules. Based on these observations, we hypothesize that the bioengineered thymus organoid can recapitulate the function of a thymus in vivo, and are able to redefine the "immunological self" of the adaptive immune system. Given that the major translational experimental focus in our group is on Type 1 diabetes (T1D), in which the insulin-secreting beta cells of the pancreas becomes targets of autoimmune destruction due to loss of self-tolerance, we will focus our investigation on whether the bioengineered thymus organoids can re-establish immune tolerance to beta-cells. Furthermore, we will investigate whether we can simultaneously induce donor-specific immune tolerance to islet allografts with the thymus bioengineering technology. Experiments in Aim 1 will optimize the construction of the thymus organoids from decellularized thymic scaffolds in vitro. Our focus in Aim 2 is to optimize the long-term survival and function of the bioengineered thymus organoids in vivo. Experiments in Aim 3 is to demonstrate that the bioengineered thymus constructed with insulin- expressing allogeneic TECs can effectively modulate the adaptive immune system to reverse insulin-autoimmunity, one of the primary driving forces for T1D progression, and to establish immune tolerance of islet allografts. The long-term goal of the research project is to translate the thymus bioengineering technique into clinical applications.
描述:同种异体移植物的慢性排斥仍然是器官移植和再生医学的一个主要障碍,虽然免疫抑制药物可以在一定程度上预防移植物排斥,但其功效有限,并且常常伴有严重的副作用。根本问题是新的 T 细胞。尽管已经做出了大量努力来调节胸腺功能以诱导供体特异性免疫耐受,但事实证明,操纵胸腺可以有效地调节胸腺功能。一项主要挑战是重现其独特的细胞外基质微环境,这对于细胞至关重要。
胸腺上皮细胞 (TEC) 是胸腺基质细胞的主要群体,对于 T 细胞的发育和定义个体的“免疫学自我”(区分自我与非自我分子的能力)至关重要在此,我们提出了一种创新的生物工程方法来调节胸腺功能,我们最近开发了一种胸腺脱细胞技术,使我们能够重建功能性胸腺类器官。 novo 移植了生物工程胸腺的无胸腺小鼠能够对模型抗原卵清蛋白产生强烈的体液反应,并迅速排斥同种异体皮肤移植物,可以通过移植共表达供体和受体的胸腺类器官来实现对同种异体皮肤移植物的耐受。基于这些观察,我们发现生物工程胸腺类器官可以重现主要组织相容性复合体(MHC)分子的功能。鉴于我们小组的主要转化实验重点是 1 型糖尿病 (T1D),其中胰腺分泌胰岛素的 β 细胞,因此能够重新定义适应性免疫系统的“免疫学自我”。由于自身耐受性的丧失而成为自身免疫破坏的目标,我们将重点研究生物工程胸腺类器官是否可以重新建立对β细胞的免疫耐受。此外,我们将研究是否可以同时诱导。使用胸腺生物工程技术对胰岛同种异体移植物进行供体特异性免疫耐受。目标 1 中的实验将优化体外脱细胞胸腺支架的胸腺类器官的构建,我们的目标 2 的重点是优化胸腺类器官的长期存活和功能。目标3的实验是证明用表达胰岛素的同种异体TEC构建的生物工程胸腺可以有效地发挥作用。调节适应性免疫系统以逆转胰岛素自身免疫(T1D 进展的主要驱动力之一),并建立同种异体胰岛移植物的免疫耐受性。该研究项目的长期目标是将胸腺生物工程技术转化为临床应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YONG FAN其他文献
YONG FAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YONG FAN', 18)}}的其他基金
Novel hematopoietic humanized mouse model to study CAR-T therapy-associated cytokine release syndrome
研究CAR-T疗法相关细胞因子释放综合征的新型造血人源化小鼠模型
- 批准号:
10648862 - 财政年份:2023
- 资助金额:
$ 38.36万 - 项目类别:
Rejuvenate aged adaptive immunity with bioengineered thymus organoids
用生物工程胸腺类器官恢复衰老的适应性免疫力
- 批准号:
9307727 - 财政年份:2016
- 资助金额:
$ 38.36万 - 项目类别:
Induction of allogeneic tolerance with bioengineered thymus organoids
用生物工程胸腺类器官诱导同种异体耐受
- 批准号:
9203600 - 财政年份:2016
- 资助金额:
$ 38.36万 - 项目类别:
Rejuvenate aged adaptive immunity with bioengineered thymus organoids
用生物工程胸腺类器官恢复衰老的适应性免疫力
- 批准号:
9167547 - 财政年份:2016
- 资助金额:
$ 38.36万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 38.36万 - 项目类别:
A Gene-Network Discovery Approach to Structural Brain Disorders
结构性脑疾病的基因网络发现方法
- 批准号:
10734863 - 财政年份:2023
- 资助金额:
$ 38.36万 - 项目类别:
Examining the Role of Social Connection in Suicide Risk for Older Autistic Adults: A Mixed Methods Study
检查社会联系在老年自闭症成人自杀风险中的作用:一项混合方法研究
- 批准号:
10727637 - 财政年份:2023
- 资助金额:
$ 38.36万 - 项目类别:
Dual-Venc 5D flow for Assessment of Congenital Heart Disease in Pediatrics
Dual-Venc 5D 流程用于评估儿科先天性心脏病
- 批准号:
10679809 - 财政年份:2023
- 资助金额:
$ 38.36万 - 项目类别:
Mechanisms Underpinning Afterload-Induced Atrial Fibrillation
后负荷诱发心房颤动的机制
- 批准号:
10679796 - 财政年份:2023
- 资助金额:
$ 38.36万 - 项目类别: