Molecular Biology of Hyaluronan Biosynthesis
透明质酸生物合成的分子生物学
基本信息
- 批准号:8816855
- 负责人:
- 金额:$ 27.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-01-01 至 2018-11-30
- 项目状态:已结题
- 来源:
- 关键词:AcetylglucosamineAffectAlginatesAmberAnabolismArchitectureAutoimmune DiseasesBindingBiochemicalBiological AssayBiological ModelsBiological ProcessBiotechnologyCarcinomaCartilageCatalysisCell AdhesionCell CommunicationCell Differentiation processCell Surface ReceptorsCell membraneCell-Cell AdhesionCellsCelluloseChargeChemicalsChlorellaCo-ImmunoprecipitationsCollaborationsComplexConnective and Soft TissueCrystallizationDataDepositionDetergentsDevelopmentEngineeringEnzymesEscherichia coliEventExtracellular MatrixGlucuronic AcidsHumanHuman bodyHyaluronanImaging TechniquesImmunosuppressive AgentsIn VitroInflammatoryLaboratoriesLeadLengthLifeLinkLipid BilayersLipidsMalignant NeoplasmsMapsMediatingMedicineMembraneMembrane BiologyMembrane LipidsMembrane ProteinsMethodsMicrobial BiofilmsMicrofilamentsModelingMolecularMolecular BiologyMolecular WeightMono-SNaturePhasePhenylalaninePhotobleachingPhysiologicalPhysiological ProcessesPhysiologyPolymersPolysaccharidesPositioning AttributeProcessPropertyProteinsProtocols documentationPublishingReactionRegulationResearchResistanceResolutionRheumatoid ArthritisRoboticsSideSignal TransductionSiteSkinStreptococcusStructureTechniquesTerminator CodonTransferaseTransmembrane DomainUV Radiation ExposureUniversitiesVertebratesViralVirginiaVirusX-Ray Crystallographybasecell motilitychemical propertycrosslinkdodecyldimethylamine oxideextracellularglycosyltransferasehyaluronan synthase 1membermembrane synthesismutantphysical propertyproteoliposomespublic health relevancereconstitutionresearch studyrho GTP-Binding Proteinsstoichiometrysugarthree dimensional structure
项目摘要
DESCRIPTION (provided by applicant): The extracellular matrix in vertebrates provides structural support to the cell, aids in osmo-regulation, and is particularly important in mediating
cell-cell interactions in soft connective tissues, such as cartilage and skin. A major component of
the extracellular matrix is hyaluronan (HA), which is an extracellular linear polysaccharide containing alternating N-acetylglucosamine (NAG) and glucuronic acid (GA) residues. HA affects many physiological processes, from cell adhesion and migration to cell differentiation and embryological development. Because of its broad impact on human physiology, a large number of pathological conditions, including many forms of cancer, autoimmune diseases, inflammatory processes, and rheumatoid arthritis, correlate with altered expression levels of HA. On a molecular level, HA is produced inside the cell by the membrane-embedded hyaluronan synthase (HAS). HAS is a remarkable enzyme. It not only catalyzes the synthesis of HA from UDP-activated substrates, but it also transports the growing polymer across the cell membrane to deposit it within the extracellular matrix. In order to accomplish this task, HAS has to fulfill
several functions. The enzyme binds the substrates UDP-NAG and -GA, it catalyzes the glycosyl transfer reaction to form HA, and it translocates the growing polymer across the cell membrane through a pore formed by its own transmembrane region. To understand how HA exerts its physiological function and to produce HA polymers with defined properties for biomedical applications, we must first unravel how HAS synthesizes HA and how it deposits the polymer in the extracellular matrix. To this end, we propose three aims that will reveal the assembly of biologically active HAS subunits in native lipid membranes, will identify the interactions between HAS and the translocating HA polymer, and will allow us to determine the structure of HAS by X-ray crystallography. First, we will combine co-immunoprecipitation studies with chemical cross-linking and photobleaching techniques to visualize HAS oligomers in native membranes. The low-resolution structural data will then be integrated with high-resolution structures of monomeric HAS to reconstruct the native, membrane-embedded HAS oligomer. Second, the interactions of HAS with the translocating HA polymer will be mapped by introducing UV-inducible cross-linkers into the TM-region of HAS. Cross-linking during HA translocation will identify positions that are in close proximity to the polysaccharide, thus delineating the physico-chemical properties of the HA transmembrane channel. Third, biochemical and low resolution structural data will be integrated with a high-resolution structure of HAS obtained by X-ray crystallography. Determining the structure of HAS both in a detergent-solubilized but also in a membrane-embedded state will reveal the architecture and oligomeric form of the synthase, allowing us to delineate the mechanism by which this marvelous enzyme synthesizes one of the most abundant extracellular polysaccharides in the human body.
描述(由申请人提供):脊椎动物的细胞外基质为细胞提供结构支持,有助于渗透压调节,并且在介导
软结缔组织(例如软骨和皮肤)中的细胞与细胞相互作用。的一个主要组成部分
细胞外基质是透明质酸(HA),它是一种细胞外线性多糖,含有交替的N-乙酰氨基葡萄糖(NAG)和葡萄糖醛酸(GA)残基。 HA 影响许多生理过程,从细胞粘附和迁移到细胞分化和胚胎发育。由于其对人类生理学的广泛影响,许多病理状况,包括多种形式的癌症、自身免疫性疾病、炎症过程和类风湿性关节炎,都与 HA 表达水平的改变相关。在分子水平上,HA 由膜嵌入的透明质酸合酶 (HAS) 在细胞内产生。 HAS 是一种非凡的酶。它不仅催化 UDP 激活的底物合成 HA,而且还将生长的聚合物运输穿过细胞膜,将其沉积在细胞外基质内。为了完成这项任务,HAS 必须完成
几个功能。该酶结合底物UDP-NAG和-GA,催化糖基转移反应形成HA,并通过其自身跨膜区域形成的孔将生长的聚合物跨细胞膜移位。为了了解HA如何发挥其生理功能并生产具有特定特性的HA聚合物用于生物医学应用,我们必须首先阐明HAS如何合成HA以及它如何将聚合物沉积在细胞外基质中。为此,我们提出了三个目标,即揭示生物活性 HAS 亚基在天然脂质膜中的组装,识别 HAS 与易位 HA 聚合物之间的相互作用,并使我们能够通过 X 射线晶体学确定 HAS 的结构。首先,我们将免疫共沉淀研究与化学交联和光漂白技术相结合,以可视化天然膜中的 HAS 寡聚物。然后,低分辨率结构数据将与单体 HAS 的高分辨率结构整合,以重建天然的膜嵌入 HAS 寡聚物。其次,通过将 UV 诱导交联剂引入 HAS 的 TM 区域,可以绘制 HAS 与易位 HA 聚合物的相互作用。 HA 易位过程中的交联将识别靠近多糖的位置,从而描绘出 HA 跨膜通道的物理化学特性。第三,生化和低分辨率结构数据将与通过X射线晶体学获得的HAS高分辨率结构相结合。确定去污剂溶解和膜嵌入状态下的 HAS 结构将揭示合酶的结构和寡聚形式,使我们能够描述这种奇妙的酶合成最丰富的细胞外多糖之一的机制。人体。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jochen Zimmer其他文献
Jochen Zimmer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jochen Zimmer', 18)}}的其他基金
Synthesis, secretion and assembly of extracellular complex carbohydrates in Gram-negative bacteria
革兰氏阴性菌胞外复合碳水化合物的合成、分泌和组装
- 批准号:
10330628 - 财政年份:2022
- 资助金额:
$ 27.55万 - 项目类别:
Synthesis, secretion and assembly of extracellular complex carbohydrates in Gram-negative bacteria
革兰氏阴性菌胞外复合碳水化合物的合成、分泌和组装
- 批准号:
10543793 - 财政年份:2022
- 资助金额:
$ 27.55万 - 项目类别:
ABC transporter-mediated secretion of capsular polysaccharides
ABC 转运蛋白介导的荚膜多糖分泌
- 批准号:
10287699 - 财政年份:2021
- 资助金额:
$ 27.55万 - 项目类别:
ABC transporter-mediated secretion of capsular polysaccharides
ABC 转运蛋白介导的荚膜多糖分泌
- 批准号:
10412117 - 财政年份:2021
- 资助金额:
$ 27.55万 - 项目类别:
Molecular Basis for Group A Streptococcus Encapsulation
A 组链球菌封装的分子基础
- 批准号:
10176394 - 财政年份:2020
- 资助金额:
$ 27.55万 - 项目类别:
Molecular Basis for Group A Streptococcus Encapsulation
A 组链球菌封装的分子基础
- 批准号:
10057347 - 财政年份:2020
- 资助金额:
$ 27.55万 - 项目类别:
Molecular mechanisms of microbial complex carbohydrate secretion
微生物复合碳水化合物分泌的分子机制
- 批准号:
9769067 - 财政年份:2018
- 资助金额:
$ 27.55万 - 项目类别:
Molecular mechanisms of microbial complex carbohydrate secretion
微生物复合碳水化合物分泌的分子机制
- 批准号:
10238961 - 财政年份:2018
- 资助金额:
$ 27.55万 - 项目类别:
Mechanism of cellulose synthesis and transport across biological membranes
纤维素合成和跨生物膜运输的机制
- 批准号:
8466338 - 财政年份:2012
- 资助金额:
$ 27.55万 - 项目类别:
Mechanism of Cellulose Synthesis and Transport Across Biological Membranes
纤维素合成和跨生物膜运输的机制
- 批准号:
10061615 - 财政年份:2012
- 资助金额:
$ 27.55万 - 项目类别:
相似国自然基金
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
- 批准号:72302067
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高尿酸调控TXNIP驱动糖代谢重编程影响巨噬细胞功能
- 批准号:82370895
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
倒装芯片超声键合微界面结构演变机理与影响规律
- 批准号:52305599
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
寒地城市学区建成环境对学龄儿童心理健康的影响机制与规划干预路径研究
- 批准号:52378051
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
原位研究聚变燃料纯化用Pd-Ag合金中Ag对辐照缺陷演化行为的影响及其相互作用机制
- 批准号:12305308
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Regulation of chondrocyte fate and function by ECM Viscoelasticity
ECM 粘弹性对软骨细胞命运和功能的调节
- 批准号:
10751895 - 财政年份:2023
- 资助金额:
$ 27.55万 - 项目类别:
Immunomodulatory biomaterial to enhancing T-cell responses to triple negative breast cancer
免疫调节生物材料可增强 T 细胞对三阴性乳腺癌的反应
- 批准号:
10699815 - 财政年份:2023
- 资助金额:
$ 27.55万 - 项目类别:
Sustained regulation of hypothalamus-pituitary-ovary hormones with tissue-engineered ovarian constructs as a treatment for osteoporosis in females
利用组织工程卵巢结构持续调节下丘脑-垂体-卵巢激素作为女性骨质疏松症的治疗方法
- 批准号:
10659277 - 财政年份:2023
- 资助金额:
$ 27.55万 - 项目类别:
Individual cell bioprinting to generate multi-tissue type condensations for osteochondral tissue regeneration
单个细胞生物打印可生成用于骨软骨组织再生的多组织类型浓缩物
- 批准号:
10659772 - 财政年份:2023
- 资助金额:
$ 27.55万 - 项目类别:
Dual Delivery of Engineered EVs and Growth Factor for Bone Regeneration
工程电动汽车和生长因子的双重输送用于骨再生
- 批准号:
10718684 - 财政年份:2023
- 资助金额:
$ 27.55万 - 项目类别: