Antiarrhythmic Mechanisms of Bilateral Cardiac Sympathetic Decentralization
双侧心脏交感神经分散的抗心律失常机制
基本信息
- 批准号:8972033
- 负责人:
- 金额:$ 17.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-12-01 至 2019-11-30
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAcuteAddressAnimalsAnti-Arrhythmia AgentsArrhythmiaAttenuatedAutonomic nervous systemBedsBehaviorBilateralBiological Neural NetworksCardiacCardiac Electrophysiologic TechniquesCareer ChoiceCephalicCervicalCessation of lifeCharacteristicsChestCicatrixClinicalConflict (Psychology)DataDecentralizationDevelopmentDevelopment PlansDoctor of PhilosophyElectrophysiology (science)ElementsEnhancersExcisionExhibitsFamily suidaeFoundationsFutureGangliaGap JunctionsGoalsGrantHandHealthHeartHeterogeneityHormonalInfarctionInferiorInjuryInvestigationLeadLifeLinkMapsMediastinalMediatingMentorsMentorshipMuscle CellsMyocardialMyocardial InfarctionMyocardiumNatureNerveNervous System PhysiologyNervous system structureNeuronsNeuropeptidesNeurosciencesOperative Surgical ProceduresOrganPathway interactionsPatient-Centered CarePatientsPatternPeripheralPhysiciansPlayProcessPropertyReflex actionRegulationResearchResearch MethodologyResearch TechnicsResidual stateResolutionRoleScientistSignal TransductionSiteSpinalSpinal CordStressStructureStructure of stellate ganglionSympathetic GangliaTechniquesTherapeuticTimeTissuesTrainingTraining ProgramsTranslatingTranslationsVentricularVentricular Arrhythmiaautonomic reflexbasebench to bedsidecareer developmentelectrical propertyexperienceimprovedin vivoindexinginsightknowledge baseneurochemistryneuroregulationneurotransmissionnovelnovel therapeuticsrelating to nervous systemresponseskillsstressorstructural biologysudden cardiac deathtool
项目摘要
DESCRIPTION (provided by applicant): This proposal describes the five-year mentored training program devised to facilitate the career development of Olujimi A. Ajijola MD PhD, into an independent physician scientist, capable of high-level scientific investigation. The important role of the intrinsic cardiac nervous system (ICNS) in the beat-to-beat regulation of cardiac contractile and electrophysiologic function is increasingly recognized, yet, it remains poorly understood. In the long term, the candidate seeks to develop a scientific and clinical niche in the
field of "intrinsic- neurocardiology", initially in the basic aspects, and in the future, "bedside"
application of fundamental findings from studying ICNS physiology in normal and diseased states. The end objective of this career track is to develop therapeutic strategies modulating the ICNS (and higher cardiac neuro-regulatory centers) for patient care. The short- to intermediate-term goals of the candidate are to develop an expertise in neuroscience, and to expand his skill sets to include neuroscientific research methods and techniques, building on his expertise in cardiac structural biology and electrophysiology, and foundations in neuroscience. The career development plan for Dr. Ajijola have the following key elements: 1) mentorship by two well-recognized and invested experts in the fields of neuroscience (including ICNS physiology) and cardiac electrophysiology; 2) didactic and hands on training in developing an expanded knowledge base, scientific research tools, and techniques in neuroscience; 3) continued expansion of cardiac electrophysiologic expertise; and 4) a pathway for tracking the candidate's overall development, and the gradual assumption of independence, expected to be fully realized by the conclusion of the grant period. The proposed track has already been initiated, with preliminary data reinforcing the scientific aims of the proposal. The research objectives of the present proposal are to identify the mechanisms by which a clinically successful neuromodulatory therapy, bilateral cardiac sympathetic decentralization (BCSD), imparts antiarrhythmic benefits. Imbalances in neuro-hormonal activation resulting from neuronal remodeling within the cardiac neural-axis occur following significant cardiac injury. These imbalances lead to excessive and destabilizing efferent cardiac sympathetic neurotransmission. BCSD, the resection of the lower pole of the stellate ganglion and the sympathetic ganglia at the 2nd through 4th thoracic levels, likely eliminates these efferent cardiac sympathetic inputs from reaching the heart, however, the mechanistic translation of this effect to cardiac neuro- regulation, especially in infarcted myocardium, is unknown. We hypothesize that the intrinsic cardiac nervous system (ICNS), as the final integrator of cardiac afferent and efferent neurotransmission, is the end-target for BCSD. Specifically, BCSD mitigates the abnormal integration and processing of neurotransmission, to and from the heart, and remodeling of structural and functional elements within the ICNS, induced by enhanced sympathetic inputs originating from higher neural centers. By so doing, BCSD, via the ICNS, attenuates cardiac action potential duration heterogeneity, and enhanced myocyte automaticity, two known mechanisms of arrhythmogenesis under states of enhanced sympathetic tone. We plan to exploit this clinically beneficial antiarrhythmic therapy to understand how cardiac information is processed within the ICNS, and the cardiac electrophysiologic consequences of stochastic ICNS signaling patterns before and after BCSD. Combining high resolution cardiac electrophysiologic mapping with in vivo recordings of neuronal signals within the ICNS, this proposal will identify novel interactions within the cardiac nervous system and their electrophysiologic consequences. In specific aim 1a, we will determine how information is processed within the ICNS in normal and infarcted hearts, before and after BCSD performed immediately after infarction, or delayed till remodeling changes have set in. In aim 1b, we will examine how ICNS structural and neurochemical (i.e. neuropeptide) properties are altered by infarction, and impact of stabilizing efferent input by BCSD. In aim 2, we will assess how post-infarct ICNS signaling impacts cardiac electrophysiological properties by performing high resolution focal and global electrophysiologic mapping in infarcted hearts with an without BCSD; and further the differences between immediate post-infraction BCSD, and delayed BCSD. Cardiac and neuronal electrophysiologic mapping of this nature has not been previously performed. Impactful findings derived from these animal studies will form the basis for future "bench" to "bedside" studies aimed at developing novel or improving current neuromodulation therapies for treating ventricular arrhythmias.
描述(由申请人提供):本提案描述了旨在促进 Olujimi A. Ajijola 医学博士的职业发展,成为一名能够进行高水平科学研究的独立医师科学家的重要角色。内在心脏神经系统(ICNS)在心脏收缩和电生理功能的逐搏调节中的作用日益得到认可,但从长远来看,人们对它的了解仍然很少。
“内在神经心脏病学”领域,最初是基础方面,未来是“床边”
应用正常和患病状态下 ICNS 生理学研究的基本结果是制定调节 ICNS(和高级心脏神经调节中心)的治疗策略,以实现患者护理的短期到中期目标。候选人的目标是发展神经科学方面的专业知识,并扩大他的技能范围,以包括神经科学研究方法和技术,以他在心脏结构生物学和电生理学方面的专业知识以及神经科学的基础为基础。以下关键要素:1)由神经科学(包括 ICNS 生理学)和心脏电生理学领域的两位知名专家提供指导;2)扩展知识库、科学研究工具和技术的教学和实践培训;神经科学;3)心脏电生理学专业知识的持续扩展;以及4)跟踪候选人整体发展的途径,以及逐步假设的独立性,预计在资助期结束时已完全实现。已经启动,初步数据加强了该提案的科学目标,本提案的研究目标是确定临床上成功的神经调节疗法,双侧心脏交感神经分散(BCSD),赋予神经失衡抗心律失常作用的机制。 - 严重心脏损伤后,心脏神经轴内的神经元重塑导致荷尔蒙激活,导致心脏传出交感神经传递过度且不稳定,即切除下端心脏交感神经传递。星状神经节的极点和第 2 至第 4 胸节的交感神经节可能会消除这些传出的心脏交感神经输入到达心脏,但是,这种效应对心脏神经调节的机制转化,特别是在梗塞心肌中,尚不清楚我们认为内在心脏神经系统 (ICNS) 作为心脏传入和传出神经传递的最终整合器,是 BCSD 的最终目标。通过这样做,BCSD 通过 ICNS 减弱了心脏动作电位持续时间的异质性,并增强了心肌细胞的自主性,这是交感神经紧张状态下心律失常发生的两种已知机制,我们计划利用这种临床上有益的抗心律失常疗法来了解心脏信息是如何处理的。结合高分辨率心脏电生理图与 ICNS 内神经信号的体内记录,该提案将确定心脏神经系统及其电生理学内的新相互作用。在具体目标 1a 中,我们将确定在梗塞后立即执行 BCSD 之前和之后,或延迟到重塑变化开始之前,正常心脏和梗塞心脏中的 ICNS 内如何处理信息。目标 1b,我们将研究梗塞如何改变 ICNS 结构和神经化学(即神经肽)特性,以及 BCSD 稳定传出输入的影响。在目标 2 中,我们将评估梗塞后 ICNS 信号传导如何通过执行高频率影响心脏电生理特性。分辨率无 BCSD 的梗死心脏的局灶性和整体电生理图;并进一步了解梗死后立即 BCSD 与延迟性 BCSD 之间的差异。以前从未进行过这种性质的绘图,从这些动物研究中得出的有影响力的发现将为未来的“实验室”到“床边”研究奠定基础,旨在开发新颖的或改进当前治疗室性心律失常的神经调节疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Olujimi A Ajijola其他文献
Olujimi A Ajijola的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Olujimi A Ajijola', 18)}}的其他基金
Antiarrhythmic mechanisms of chronic vagal nerve stimulation in sympathetic neurons
交感神经元慢性迷走神经刺激的抗心律失常机制
- 批准号:
10635151 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Core A: Ultrastructural Assessment & Human Tissue
核心 A:超微结构评估
- 批准号:
10627575 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Antiarrhythmic mechanisms of chronic vagal nerve stimulation in sympathetic neurons
交感神经元慢性迷走神经刺激的抗心律失常机制
- 批准号:
10627579 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Satellite Glial Cell Activation and Sympathetic Imbalance in Cardiomyopathy and Arrhythmias
心肌病和心律失常中的卫星胶质细胞激活和交感神经失衡
- 批准号:
10416426 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Satellite Glial Cell Activation and Sympathetic Imbalance in Cardiomyopathy and Arrhythmias
心肌病和心律失常中的卫星胶质细胞激活和交感神经失衡
- 批准号:
10599342 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Mechanisms of Cardiac TRPV1 Afferent Remodeling in Ventricular Arrhythmias
室性心律失常中心脏 TRPV1 传入重塑的机制
- 批准号:
10278404 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
Mechanisms of Cardiac TRPV1 Afferent Remodeling in Ventricular Arrhythmias
室性心律失常中心脏 TRPV1 传入重塑的机制
- 批准号:
10674847 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
The University of California - Los Angeles (UCLA) Resident Scientist Training Program (RSTP)
加州大学洛杉矶分校 (UCLA) 驻地科学家培训计划 (RSTP)
- 批准号:
10593059 - 财政年份:2020
- 资助金额:
$ 17.5万 - 项目类别:
The University of California - Los Angeles (UCLA) Resident Scientist Training Program (RSTP)
加州大学洛杉矶分校 (UCLA) 驻地科学家培训计划 (RSTP)
- 批准号:
10593059 - 财政年份:2020
- 资助金额:
$ 17.5万 - 项目类别:
The University of California - Los Angeles (UCLA) Resident Scientist Training Program (RSTP)
加州大学洛杉矶分校 (UCLA) 驻地科学家培训计划 (RSTP)
- 批准号:
10373019 - 财政年份:2020
- 资助金额:
$ 17.5万 - 项目类别:
相似国自然基金
剪接因子U2AF1突变在急性髓系白血病原发耐药中的机制研究
- 批准号:82370157
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
IKZF1-N159Y/S热点突变在急性白血病中的致病机制研究
- 批准号:82300168
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
NMNAT1上调B7-H3介导急性早幼粒细胞白血病免疫逃逸的作用和机制研究
- 批准号:82300169
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
支链氨基酸转氨酶1在核心结合因子急性髓细胞白血病中的异常激活与促进白血病发生的分子机制研究
- 批准号:82370178
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
SRSF3/LRP5/Wnt信号通路在急性淋巴细胞白血病中的作用及机制研究
- 批准号:82370128
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Role of Primary Sensory Neuron CaMKII Signaling in Regulation of Pain
初级感觉神经元 CaMKII 信号传导在疼痛调节中的作用
- 批准号:
10656886 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Elucidation of Nanostructure and Function of Spontaneous GABAergic Transmission at the Inhibitory Synapse
抑制性突触自发 GABA 能传递的纳米结构和功能的阐明
- 批准号:
10750025 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
High content analgesic screening from human nociceptors
从人类伤害感受器中筛选高含量镇痛剂
- 批准号:
10578042 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Prefrontal circuit mechanisms of repetitive transcranial magnetic stimulation
重复经颅磁刺激的前额电路机制
- 批准号:
10649292 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别: