3D Spheroid Model of Adipose Pathophysiology
脂肪病理生理学 3D 球体模型
基本信息
- 批准号:9177098
- 负责人:
- 金额:$ 35.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-05 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAdherent CultureAdipocytesAdipose tissueAffectAmericanAnimal TestingAnimalsAnti-Obesity AgentsBiocompatibleCardiovascular systemCell Culture TechniquesCell ShapeCell SizeCellsCellular biologyChargeChemistryClinical TrialsComorbidityCuesDepositionDevelopmentDiseaseDoseDown-RegulationDropsElastinEncapsulatedFat-Restricted DietFatty AcidsFatty acid glycerol estersFigs - dietaryFunctional disorderFutureGenesGoalsGrowthHumanHydrogelsIn VitroInvestigationLipolysisMMP14 geneMediatingMetabolic PathwayMetabolic stressMethodsModelingModificationMorphologyMusNutrientObese MiceObesityPathway interactionsPatientsPeroxisome Proliferator-Activated ReceptorsPharmaceutical PreparationsPhenotypePhysiologicalPlayPopulationPorosityPreclinical Drug EvaluationProductionRegimenRoleScientistShapesSignal TransductionStressSurfaceTNF geneTestingTherapeuticTissue EngineeringTissue ModelTriglyceridesVisceraladipocyte differentiationadiponectinclinically relevantcopolymerdiet and exercisegenome-widein vitro Modelin vivoin vivo Modelinnovationinventionlipid biosynthesismonolayernovelnovel therapeuticspolypeptideresponsescaffoldsubcutaneoussurface coating
项目摘要
PROJECT SUMMARY
The goals of this proposal are to develop in vitro models of adipose tissue that allow a superior hypertrophic
growth of adipocytes and facilitate investigation of metabolic stresses and signaling mechanisms during
pathological culturing conditions mimicking those of progressing obesity. Existing in vitro adipocyte culture
models are not optimal: 2-D monolayer culture does not represent the 3-D adipose morphology, 3-D cell
encapsulation models (e.g., hydrogels) restrict the volume of differentiating adipocytes due to compressive
stress and limited porosity, and 3-D “scaffold-free” models (e.g., hanging drop, non-adherent coatings) do
not support long term culture due to spheroid loss during media changes. Consequently, the existing in vitro
models result in functionally impaired adipocytes that do not reach their full growth potential, seriously
limiting the study of how a full range of intracellular triglyceride (fat) deposition affects adipocyte function in
the development of obesity. This proposal directly addresses this technical limitation using a novel tissue
engineering approach. Specific Aims to prepare physiologically relevant in vitro models of adiposity are to:
(1) Create the stable, surface-tethered 3-D spheroid model of adipocyte culture by using an array of
copolymers of biocompatible elastin-like polypeptide (ELP) and charged polyelectrolytes (PE) as coating
substrates. Here the positively-charged PEs encourage spheroid formation and ELP encourages stable
surface-tethering of spheroids. We will systematically investigate the effect of charge content and chemistry
on 3-D spheroid organization. Our overarching hypothesis is that we will achieve superior adipocyte
maturation and functionality by this surface modification method that achieves 3-D culture without using a
cell-size restrictive encapsulation scaffold and achieves long term culture through surface-tethering of
spheroids. (2) Define the mechanism of adipogenesis in 3-D spheroid culture and determine the functionally
superior model by comparing against 2-D monolayer and 3-D hydrogel cultures. We seek to define the
mechanism of enhanced adipogenesis in the context of morphological cues (cell shape through the mmp14
pathway) regulating PPAR-, a key effector of adipogenesis. (3) Determine the effects of multiple metabolic
stresses (fatty acids and TNF-) on adipocyte phenotype, viability, and function. The stability of 3-D culture
atop our ELP-PE coatings allows a substantially longer culture period. This innovation allows us to expose
the optimally developing 3-D spheroid cultures to nutritionally relevant fatty acids at physiological levels.
Finally, by comparing the functional and genome-wide responses of the metabolically stressed 3-D
spheroids to those of primary adipocytes from obese animal (mice) and human donors, we will recapitulate
the effects of metabolic stresses predominant in progressing obesity. We expect the functionally superior
3-D spheroid model to be a clinically relevant in vitro adipocyte model with the potential to invent novel
therapeutics by examining drug and nutrient treatments on an in vivo-like mature cell population.
项目概要
该提案的目标是开发脂肪组织的体外模型,以实现卓越的肥厚性
脂肪细胞的生长并促进代谢应激和信号机制的研究
病理培养条件模仿现有的体外脂肪细胞培养条件。
模型不是最佳的:2-D 单层培养物不代表 3-D 脂肪形态、3-D 细胞
封装模型(例如水凝胶)由于压缩而限制了分化脂肪细胞的体积
应力和有限的孔隙率,以及 3-D“无支架”模型(例如,悬滴、非粘附涂层)
由于在测试的培养基更换期间球体损失,现有的体外不支持长期培养。
模型导致脂肪细胞功能受损,无法充分发挥其生长潜力,严重
限制了细胞内甘油三酯(脂肪)沉积如何影响脂肪细胞功能的研究
该提案使用新型组织直接解决了这一技术限制。
工程方法制备生理相关的肥胖体外模型的具体目标是:
(1) 通过使用一系列
生物相容性类弹性蛋白多肽 (ELP) 和带电聚电解质 (PE) 的共聚物作为涂层
这里带正电荷的 PE 促进球体形成,ELP 促进稳定。
我们将系统地研究电荷含量和化学性质的影响。
我们的首要假设是我们将获得优质的脂肪细胞。
通过这种表面修饰方法实现成熟和功能,无需使用
细胞大小限制性封装支架,并通过表面束缚实现长期培养
(2) 定义 3-D 球体培养中的脂肪生成机制并确定其功能。
通过与 2-D 单层和 3-D 水凝胶培养物进行比较,我们寻求定义更好的模型。
在形态学线索(通过 mmp14 的细胞形状)的背景下增强脂肪生成的机制
(3)确定多种代谢的影响
压力(脂肪酸和 TNF-α)对脂肪细胞表型、活力和功能的影响 3-D 培养物的稳定性。
我们的 ELP-PE 涂层可以显着延长培养时间,这项创新使我们能够暴露。
在生理水平上优化开发 3-D 球体培养物以获取营养相关的脂肪酸。
最后,通过比较代谢应激 3-D 的功能和全基因组反应
球体与来自肥胖动物(小鼠)和人类供体的原代脂肪细胞的球体,我们将重述
代谢应激的影响在肥胖进展中占主导地位,我们预计功能上会更好。
3-D 球体模型将成为临床相关的体外脂肪细胞模型,具有发明新脂肪细胞的潜力
通过检查对体内类似成熟细胞群的药物和营养治疗来进行治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amol Vijay Janorkar其他文献
Amol Vijay Janorkar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amol Vijay Janorkar', 18)}}的其他基金
Multicomponent Composites for Bioengineering of Dental Bone Tissue
用于牙骨组织生物工程的多组分复合材料
- 批准号:
8810667 - 财政年份:2014
- 资助金额:
$ 35.53万 - 项目类别:
Multicomponent Composites for Bioengineering of Dental Bone Tissue
用于牙骨组织生物工程的多组分复合材料
- 批准号:
8684259 - 财政年份:2014
- 资助金额:
$ 35.53万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 35.53万 - 项目类别:
Regulation of Adherent Cell Proliferation by Matrix Viscoelasticity
基质粘弹性对贴壁细胞增殖的调节
- 批准号:
10735701 - 财政年份:2023
- 资助金额:
$ 35.53万 - 项目类别:
Parallel Characterization of Genetic Variants in Chemotherapy-Induced Cardiotoxicity Using iPSCs
使用 iPSC 并行表征化疗引起的心脏毒性中的遗传变异
- 批准号:
10663613 - 财政年份:2023
- 资助金额:
$ 35.53万 - 项目类别:
Parallel Characterization of Genetic Variants in Chemotherapy-Induced Cardiotoxicity Using iPSCs
使用 iPSC 并行表征化疗引起的心脏毒性中的遗传变异
- 批准号:
10663613 - 财政年份:2023
- 资助金额:
$ 35.53万 - 项目类别:
Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
- 批准号:
10482465 - 财政年份:2022
- 资助金额:
$ 35.53万 - 项目类别: