Database and software development for protein-nucleic acid structure predication
蛋白质核酸结构预测的数据库和软件开发
基本信息
- 批准号:8994737
- 负责人:
- 金额:$ 28.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-02-01 至 2019-11-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAffinityAgreementAlgorithmsApoptosisBenchmarkingBindingBiological AssayBiological ProcessCancer DiagnosticsCollaborationsCommunitiesComplexComputational algorithmComputer SimulationComputer softwareDNADNA RepairDNA StructureDNA biosynthesisDNA-Protein InteractionDataData SetDatabasesDevelopmentDiseaseDockingDrug DesignFOLH1 geneGene ExpressionGene Expression RegulationGenetic TranscriptionGoalsGrantHealthInternetLaboratoriesLicensingLigandsMethodsMolecularMolecular ConformationNucleic AcidsPharmacologic SubstancePlayProcessProcessed GenesProteinsRNARNA ProcessingRNA SequencesRNA-Binding ProteinsRNA-Protein InteractionRoleSamplingServicesSet proteinSource CodeSpecificityStatistical MechanicsStructureSurface AntigensSystemTestingTherapeutic InterventionTimeTrainingVirus Replicationantigen bindingaptamerbasecancer cellcancer therapycomputer studiesdesigndrug developmentflexibilityimprovednovelnucleic acid structureopen sourcepathogenprediction algorithmpredictive modelingprotein foldingprotein protein interactionprotein structuresoftware developmentsuccessuser-friendly
项目摘要
DESCRIPTION (provided by applicant): Our long-term goal is protein-nucleic acid (NA, namely RNA and DNA) structure prediction, for the ultimate goal of rational drug design. Protein-RNA interactions play critical roles in RNA processing, gene expression and viral replication. Screen of compounds that inhibit or promote specific protein-RNA binding and design of short RNA sequences (RNA aptamers) that bind to cancer cell-surface antigens or other disease-associated protein targets have profound applications in drug development. Protein-DNA interactions are essential for transcription, DNA damage repair and apoptosis. Reliable predictive model for protein-NA structures will thus have a far-reaching impact on understanding the fundamental biological processes and on rational design of therapeutic interventions. However, despite the widespread biomedical significance of the problem, computational studies on protein-RNA structure prediction remain very limited. One of the key bottlenecks is lack of large training and testing data sets of experimentally determined protein-RNA complex structures. In this project, we propose to establish a platform service for the protein-RNA structure prediction community by constructing rigorous benchmarking data sets and for the first time, flexible decoys for algorithm development (including parameter training), assessment and systematic improvement. We also propose to develop a new statistical scoring framework for predicting protein-RNA structures by extracting the molecular interaction information from the benchmarks and by accounting for molecular flexibility. The datasets including flexible decoys and the software will be freely distributed to the academic community. The methods will be generalized to protein-DNA structure predictions. We will also test the predictive power of our algorithms by predicting RNA aptamer binding to prostate-specific membrane antigen (PSMA). Our prediction and rational design of PSMA-inhibiting RNA aptamers will be tested thoroughly through experimental assays. Our ability to predict and design RNA aptamers that bind to cancer cell-surface antigens such as PSMA with high affinity and specificity will have great potential for targeted cancer diagnostics and therapy.
描述(申请人提供):我们的长期目标是蛋白质-核酸(NA,即RNA和DNA)结构预测,以达到合理药物设计的最终目标。蛋白质-RNA 相互作用在 RNA 加工、基因表达和病毒复制中发挥着关键作用。筛选抑制或促进特定蛋白质-RNA 结合的化合物以及设计与癌细胞表面抗原或其他疾病相关蛋白质靶标结合的短 RNA 序列(RNA 适体)在药物开发中具有深远的应用。蛋白质-DNA 相互作用对于转录、DNA 损伤修复和细胞凋亡至关重要。因此,蛋白质-NA结构的可靠预测模型将对理解基本生物过程和合理设计治疗干预措施产生深远影响。然而,尽管该问题具有广泛的生物医学意义,但蛋白质-RNA 结构预测的计算研究仍然非常有限。关键瓶颈之一是缺乏实验确定的蛋白质-RNA 复合结构的大型训练和测试数据集。在这个项目中,我们建议通过构建严格的基准数据集,并首次为算法开发(包括参数训练)、评估和系统改进提供灵活的诱饵,为蛋白质-RNA结构预测社区建立一个平台服务。我们还建议开发一个新的统计评分框架,通过从基准中提取分子相互作用信息并考虑分子灵活性来预测蛋白质-RNA 结构。包括灵活诱饵和软件的数据集将免费分发给学术界。这些方法将推广到蛋白质-DNA 结构预测。我们还将通过预测 RNA 适体与前列腺特异性膜抗原 (PSMA) 的结合来测试我们算法的预测能力。我们对 PSMA 抑制 RNA 适体的预测和合理设计将通过实验测定进行彻底测试。我们能够预测和设计以高亲和力和特异性与癌细胞表面抗原(例如 PSMA)结合的 RNA 适体,这将为靶向癌症诊断和治疗带来巨大潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
XIAOQIN ZOU其他文献
XIAOQIN ZOU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('XIAOQIN ZOU', 18)}}的其他基金
Structure prediction and in silico screening of protein-peptide interactions
蛋白质-肽相互作用的结构预测和计算机筛选
- 批准号:
10613885 - 财政年份:2020
- 资助金额:
$ 28.31万 - 项目类别:
Structure prediction and in silico screening of protein-peptide interactions
蛋白质-肽相互作用的结构预测和计算机筛选
- 批准号:
10394298 - 财政年份:2020
- 资助金额:
$ 28.31万 - 项目类别:
Structure prediction and in silico screening of protein-peptide interactions
蛋白质-肽相互作用的结构预测和计算机筛选
- 批准号:
10605034 - 财政年份:2020
- 资助金额:
$ 28.31万 - 项目类别:
Database and software development for protein-nucleic acid structure predication
蛋白质核酸结构预测的数据库和软件开发
- 批准号:
8817202 - 财政年份:2015
- 资助金额:
$ 28.31万 - 项目类别:
Database and software development for protein-nucleic acid structure predication
蛋白质核酸结构预测的数据库和软件开发
- 批准号:
9188820 - 财政年份:2015
- 资助金额:
$ 28.31万 - 项目类别:
A new scoring framework for selecting structural models
用于选择结构模型的新评分框架
- 批准号:
7708263 - 财政年份:2009
- 资助金额:
$ 28.31万 - 项目类别:
A new scoring framework for selecting structural models
用于选择结构模型的新评分框架
- 批准号:
7943077 - 财政年份:2009
- 资助金额:
$ 28.31万 - 项目类别:
相似国自然基金
抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
- 批准号:32370941
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
- 批准号:82304698
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向免疫疗法标志物识别的基于多特征融合的肽与MHC亲和力预测研究
- 批准号:62302277
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
- 批准号:32360190
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
DNA四面体限域辅助的高亲和力铅笔芯微电极用于早期癌症精准诊断研究
- 批准号:22304062
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Database and software development for protein-nucleic acid structure predication
蛋白质核酸结构预测的数据库和软件开发
- 批准号:
8817202 - 财政年份:2015
- 资助金额:
$ 28.31万 - 项目类别: