A 3-D biomimetic human islet to model beta cell function in health and disease
3D 仿生人类胰岛,用于模拟健康和疾病中 β 细胞的功能
基本信息
- 批准号:9169716
- 负责人:
- 金额:$ 3.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-20 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAccountingAddressBeta CellBiocompatible MaterialsBiologyBiomedical EngineeringBiomimeticsBlood VesselsCardiacCardiac MyocytesCell Culture SystemCell DeathCell MaturationCell SurvivalCell physiologyCellsCellular biologyComplexDevicesDiabetes MellitusDiseaseEndocrineEndothelial CellsEnvironmentEnvironmental Risk FactorExtracellular MatrixFailureFunctional disorderGenotypeGoalsGrantHealthHeartHumanHypoxiaIn VitroInsulinInsulin-Dependent Diabetes MellitusIslet CellIslets of LangerhansKnowledgeLifeLiverMaintenanceMetabolicMicrofluidic MicrochipsMicrofluidicsModelingNutrientOptical MethodsOrganOxygenPancreasPathogenesisPatientsPericytesPhenotypePhysiologyPluripotent Stem CellsProductionRoleSamplingSourceStromal CellsStructure of beta Cell of isletSystemTestingTimeTissue EngineeringTissuesUnited States National Institutes of HealthVascular Endothelial CellVascular SystemVascularizationWaste ProductsWorkassay developmentbasebody systembrain tissuecapillary bedcell typedesigndisease mechanisms studyendocrine pancreas developmentflexibilityhigh throughput screeninghuman stem cellsin vitro Modelin vivoinduced pluripotent stem cellinsightisletislet stem cellsmultidisciplinarynerve stem cellneurotensin mimic 2neurovascular unitnovelnovel therapeuticsreconstructionresearch studyscreeningstemstem cell biologythree dimensional cell culture
项目摘要
DESCRIPTION (provided by applicant): An ideal system for identifying disease mechanisms of diabetes and screening for new therapeutics would be a renewable source of beta cells and the ability to study patient-specific cells. Such a system could help identify beta cell-intrinsic mechanisms of cell death in type I diabetes and help establish genotype-phenotype correlations. 2D cell culture systems have been the mainstay of attempts to culture human cadaveric islets or to differentiate human pluripotent stem cells (hPSCs) toward the pancreatic beta cell fate. However, human islets cannot be maintained for prolonged periods of time with these systems, nor can functional beta cells be produced from hPSCs. Since current 2D culture conditions do not take into account critical cell-cell and cell- matrix interactions for beta cell development and function, there is a need for new 3D culture models of human islets that more accurately mimic the in vivo environment. Our multidisciplinary team of a stem cell/islet biologist a vascular biologist and two bioengineers proposes to develop a novel in vitro platform to create a human islet micro-organ perfused with human microvessels in a microfluidic device with all components derived from a single human induced pluripotent stem cell (hiPSC) source. First, we will optimize conditions and cell ratios by creating a 3D in vitro human islet micro-organ in static cultures outside the device that is comprised of islet endocrine cells, stromal cells, pancreas-specific extracellular matrix, and human endothelial cells (Aim 1). Next, we will assemble these 3D human islet micro-organs in a microfluidic device, so that nutrients are delivered and waste products are removed through a perfused capillary bed. This 3D islet micro- organ will closely mimic the dynamic metabolic changes typical for the in vivo beta cell environment (Aim 2). While a hiPSC-derived islet micro-organ is the ultimate goal, we will pursue a parallel approach with each Aim, using human cadaveric islets as a cell source, as experiments with primary human islets will provide important insight into the microenvironment necessary for maintaining mature beta cells ex vivo. Our model, which fully mimics in vivo physiology and is amenable to high throughput screening, will provide a platform for identifying regulators of beta cell maturation, replication, failure, and survival and will help reveal the causes of human diabetes. Our microfluidic platform has the flexibility to combine islet micro-organs with additional micro-organs (e.g. liver) in a continuous vascular network to simulate the complex inter-organ interactions relevant to human beta cell physiology. Thus, our platform will enable studies into the role of inter-organ cross talk in the pathogenesis of diabetes.
描述(由申请人提供):用于识别糖尿病疾病机制和筛选新疗法的理想系统将是β细胞的可再生来源,并且研究患者特异性细胞的能力可以帮助识别β细胞内在机制。研究 I 型糖尿病中的细胞死亡并帮助建立基因型-表型相关性一直是培养人类尸体胰岛或将人类多能干细胞 (hPSC) 分化为干细胞的主要尝试。然而,人类胰岛不能用这些系统长时间维持,也不能从 hPSC 产生功能性 β 细胞,因为当前的 2D 培养条件没有考虑关键的细胞-细胞和细胞-基质相互作用。对于β细胞的发育和功能,需要更准确地模拟体内环境的新的人类胰岛3D培养模型,我们的多学科团队由干细胞/胰岛生物学家、血管生物学家和两名生物工程师组成,建议开发一种新型的胰岛细胞模型。体外平台,在微流体装置中创建充满人类微血管的人类胰岛微器官,其所有成分均源自单一人类诱导多能干细胞 (hiPSC) 来源。 首先,我们将通过创建 3D 体外模型来优化条件和细胞比例。装置外静态培养的人胰岛微器官,由胰岛内分泌细胞、基质细胞、胰腺特异性细胞外基质和人内皮细胞组成(目标 1)。接下来,我们将在微流体装置中组装这些 3D 人体胰岛微器官,以便通过灌注的毛细血管床输送营养物质并清除废物。这种 3D 胰岛微器官将密切模仿体内典型的动态代谢变化。体内 β 细胞环境(目标 2)虽然 hiPSC 衍生的胰岛微器官是最终目标,但我们将采用人类尸体胰岛作为细胞来源的平行方法来实现每个目标。与原代人胰岛的研究将为体外维持成熟 β 细胞所需的微环境提供重要的见解。我们的模型完全模仿体内生理学,并且适合高通量筛选,将为识别 β 细胞成熟和复制的调节因子提供一个平台。 、失败和生存,并将有助于揭示人类糖尿病的原因,我们的微流体平台能够灵活地将胰岛微器官与连续血管网络中的其他微器官(例如肝脏)结合起来,以模拟复杂的器官间相互作用。与人类β细胞生理学相关,因此,我们的平台将能够研究器官间串扰在糖尿病发病机制中的作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Karen L Christman其他文献
Karen L Christman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Karen L Christman', 18)}}的其他基金
Training in Bioengineering Research and Technology Development in Cardiovascular in Cardiopulmonary Health and Disease
心肺健康和疾病领域心血管生物工程研究和技术开发培训
- 批准号:
10614653 - 财政年份:2022
- 资助金额:
$ 3.35万 - 项目类别:
Infusible Extracellular Matrix for Treating Myocardial Infarction
可溶性细胞外基质治疗心肌梗塞
- 批准号:
10642880 - 财政年份:2022
- 资助金额:
$ 3.35万 - 项目类别:
Infusible Extracellular Matrix for Treating Myocardial Infarction
可溶性细胞外基质治疗心肌梗死
- 批准号:
10504948 - 财政年份:2022
- 资助金额:
$ 3.35万 - 项目类别:
New infusible ECM hydrogel for treating acute myocardial infarction
新型可熔ECM水凝胶治疗急性心肌梗死
- 批准号:
9907247 - 财政年份:2020
- 资助金额:
$ 3.35万 - 项目类别:
Injectable Biomaterial for Treating Hypoplastic Left Heart Syndrome
用于治疗左心发育不全综合征的可注射生物材料
- 批准号:
10322051 - 财政年份:2019
- 资助金额:
$ 3.35万 - 项目类别:
MMP Responsive Nanoparticles for Treating Acute Myocardial Infarction
MMP 响应纳米颗粒治疗急性心肌梗死
- 批准号:
9761569 - 财政年份:2017
- 资助金额:
$ 3.35万 - 项目类别:
MMP responsive polymeric materials for treating acute myocardial infarction
MMP响应性高分子材料治疗急性心肌梗死
- 批准号:
10734728 - 财政年份:2017
- 资助金额:
$ 3.35万 - 项目类别:
Extracellular matrix hydrogels for treating ischemia
用于治疗缺血的细胞外基质水凝胶
- 批准号:
9210846 - 财政年份:2016
- 资助金额:
$ 3.35万 - 项目类别:
A 3-D biomimetic human islet to model beta cell function in health and disease
3D 仿生人类胰岛,用于模拟健康和疾病中 β 细胞的功能
- 批准号:
8813754 - 财政年份:2014
- 资助金额:
$ 3.35万 - 项目类别:
Extracellular matrix hydrogels for treating ischemia
用于治疗缺血的细胞外基质水凝胶
- 批准号:
8371197 - 财政年份:2012
- 资助金额:
$ 3.35万 - 项目类别:
相似国自然基金
套期会计有效性的研究:实证检验及影响机制
- 批准号:72302225
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
上市公司所得税会计信息公开披露的经济后果研究——基于“会计利润与所得税费用调整过程”披露的检验
- 批准号:72372025
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
全生命周期视域的会计师事务所分所一体化治理与审计风险控制研究
- 批准号:72372064
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
兔死狐悲——会计师事务所同侪CPA死亡的审计经济后果研究
- 批准号:72302197
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
环境治理目标下的公司财务、会计和审计行为研究
- 批准号:72332003
- 批准年份:2023
- 资助金额:166 万元
- 项目类别:重点项目
相似海外基金
SORDINO-fMRI for mouse brain applications
用于小鼠大脑应用的 SORDINO-fMRI
- 批准号:
10737308 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别:
Delineating the functional impact of recurrent repeat expansions in ALS using integrative multiomic analysis
使用综合多组学分析描述 ALS 中反复重复扩增的功能影响
- 批准号:
10776994 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别:
Subchondral Trabecular Plate and Rod Abnormalities in Human Osteoarthritis
人类骨关节炎的软骨下小梁板和杆异常
- 批准号:
10660605 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别:
Impact of Structural Racism on Racial Disparities in Cognitive Impairment
结构性种族主义对认知障碍种族差异的影响
- 批准号:
10572864 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别:
Integration of advanced imaging and multiOMICs to elucidate pro-atherogenic effects of endothelial-to-Immune cell-like transition (EndICLT)
整合先进成像和多组学技术来阐明内皮细胞向免疫细胞样转变的促动脉粥样硬化效应 (EndICLT)
- 批准号:
10606258 - 财政年份:2023
- 资助金额:
$ 3.35万 - 项目类别: