Nanopore single-molecule dielectrophoresis and biomedical detection
纳米孔单分子介电泳与生物医学检测
基本信息
- 批准号:9042400
- 负责人:
- 金额:$ 29.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-04-01 至 2018-03-31
- 项目状态:已结题
- 来源:
- 关键词:AcidsBindingBiologicalBiological MarkersBiological SciencesBiosensing TechniquesBiotechnologyBloodCancer DetectionCancer PatientCancer PrognosisClinicalComplexComplex MixturesDetectionDevicesDiagnosticDiscriminationDiseaseEarly DiagnosisElectrostaticsEngineeringFaceFamilyFamily memberGeneticGoalsHealthMalignant NeoplasmsMalignant neoplasm of lungMedicalMethodsMicroRNAsMolecularNoiseNucleic AcidsNucleotidesOutcomes ResearchPathogen detectionPatientsPeptide Nucleic AcidsPlantsPlasmaPoint MutationRNARouteSamplingSignal TransductionSingle Nucleotide PolymorphismSpecificityStatistical Data InterpretationSystemTechnologyTestingTimeTranslatingVisionbasebiomarker discoverybiomarker panelcancer diagnosiscirculating microRNAclinical applicationcostcost effectivedesigndiagnostic biomarkerdiagnostic screeningelectric fieldflexibilityfood scienceimprovedinnovationlung cancer screeningmicroRNA biomarkersmolecular diagnosticsmolecular dynamicsmultiplex detectionnanodevicenanoporenanosciencenovelnucleic acid detectionoutcome forecastpotential biomarkersensorsingle moleculesuccesstool
项目摘要
DESCRIPTION (provided by applicant): The objective of this project is to elucidate a new nanopore single-molecule effect of "carrier-guided nanopore dielectrophoresis" and explore its application in selective capture and noise-free detection of cancer-derived microRNA biomarkers in clinical samples. Lung cancer early detection urgently needs non-invasive and cost-effective confirmatory tests. Lung cancer-derived circulating microRNAs are becoming potential biomarkers for lung cancer diagnosis and prognosis. We have developed a nanopore single molecule "Counter" for electric detection of microRNAs, offering a potential non-invasive tool for disease screening and diagnostics. However, translating a conceptual nanopore sensor into a clinically usable technology faces a big challenge due to the complexity of clinical samples (plasma nucleic acids extracts), which cause intensive "contaminative signals" that severely influence the target miRNA determination and cannot be eliminated by any current methods. We discovered a new nanopore effect, carrier-guided nanopore dielectrophoresis (CND). Using this effect, we for the first time devise an extremely useful approach for noise-free nucleic acids detection in clinical samples. This approach utilizes a carrier-probe to bind the target miRNA. Under a highly non- uniform electric field outside the nanopore entrance, only the miRNA*carrier-probe dipole is captured in the nanopore by a dielectrophoresis force, whereas all non-target nucleic acids without carrier-probe binding are rejected by the repulsive electrostatic force. Consequently only the signatures for the miRNA*carrier-probe complex can be identified; any interference signal originating from non-target species is completely eliminated. This discovery opens a new route to the selective capture and noise-free detection of any target nuclic acids in the complex mixture, representing a substantial step toward the nanopore clinical applications. In this project, we are motivated to 1) completely elucidate the CND effect, explore the target diversity, enhance the sensitivity; 2) establish a nanopore dielectrophoresis approach for single-nucleotide discrimination and a barcode approach for multiplex miRNA detection; 3) utilize nanopore dielectrophoresis mechanism to detect lung cancer-derived miRNAs biomarkers in patient samples. The success of this project will be a substantial contribution to nanoscience and biotechnology, and open an avenue to nanopore applications in medical diagnostics, biomarkers discovery and pathogen detection, as well as plant science and food engineering where rapid genetic detection is required. The long term vision is applying a robust, flexible nanopore device in solving life science problems.
描述(申请人提供):该项目的目的是阐明“载体引导的纳米孔介电电泳”的一种新的纳米孔单分子效应,并探索其在临床中选择性捕获和无噪音检测癌症来源的microRNA生物标志物中的应用。肺癌早期检测迫切需要非侵入性且具有成本效益的验证性检测,肺癌来源的循环 microRNA 正在成为肺癌诊断和预后的潜在生物标志物。用于微RNA电检测的纳米孔单分子“计数器”,为疾病筛查和诊断提供了潜在的非侵入性工具。然而,由于临床样本(血浆)的复杂性,将概念性纳米孔传感器转化为临床可用的技术面临着巨大的挑战。核酸提取物),这会产生强烈的“污染信号”,严重影响目标 miRNA 的测定,并且无法通过任何现有方法消除,我们发现了一种新的纳米孔效应,即载体引导的纳米孔介电泳。 (CND)。利用这种效应,我们首次设计了一种极其有用的方法,用于临床样品中的无噪声核酸检测,该方法利用载体探针在高度不均匀的电场下结合目标 miRNA。在纳米孔入口之外,只有 miRNA* 载体-探针偶极子被介电泳力捕获在纳米孔中,而所有没有载体-探针结合的非目标核酸都被仅测试的静电排斥力所排斥。可以识别 miRNA* 载体-探针复合物的特征;完全消除源自非目标物种的任何干扰信号,这一发现为选择性捕获和无噪音检测复杂混合物中的任何目标核酸开辟了新途径。 ,代表着纳米孔临床应用迈出了实质性一步,我们的动机是:1)彻底阐明CND效应,探索靶标多样性,提高灵敏度;2)建立一种用于单核苷酸区分和检测的纳米孔介电泳方法。用于多重 miRNA 检测的条形码方法;3)利用纳米孔介电泳机制检测患者样本中肺癌来源的 miRNA 生物标志物,该项目的成功将为纳米科学和生物技术做出重大贡献,并为纳米孔在医学中的应用开辟道路。诊断、生物标志物发现和病原体检测,以及需要快速基因检测的植物科学和食品工程,长期愿景是应用强大、灵活的纳米孔设备来解决生命科学问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Li-Qun (Andrew) GU其他文献
Li-Qun (Andrew) GU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Li-Qun (Andrew) GU', 18)}}的其他基金
Nanopore single-molecule dielectrophoresis and biomedical detection
纳米孔单分子介电泳与生物医学检测
- 批准号:
9271050 - 财政年份:2015
- 资助金额:
$ 29.13万 - 项目类别:
Development of a prototype system for assaying exocytosis from individual cells using using transparent microelectrode arrays
开发使用透明微电极阵列测定单个细胞胞吐作用的原型系统
- 批准号:
8979410 - 财政年份:2011
- 资助金额:
$ 29.13万 - 项目类别:
Development of a prototype system for assaying exocytosis from individual cells using using transparent microelectrode arrays
开发使用透明微电极阵列测定单个细胞胞吐作用的原型系统
- 批准号:
9315907 - 财政年份:2011
- 资助金额:
$ 29.13万 - 项目类别:
Programmable Multi-Target Detection Using an Aptamer-Integrated Nanopore
使用适配体集成纳米孔进行可编程多目标检测
- 批准号:
7574367 - 财政年份:2007
- 资助金额:
$ 29.13万 - 项目类别:
Programmable Multi-Target Detection Using an Aptamer-Integrated Nanopore
使用适配体集成纳米孔进行可编程多目标检测
- 批准号:
8018612 - 财政年份:2007
- 资助金额:
$ 29.13万 - 项目类别:
Programmable Multi-Target Detection Using an Aptamer-Integrated Nanopore
使用适配体集成纳米孔进行可编程多目标检测
- 批准号:
7344830 - 财政年份:2007
- 资助金额:
$ 29.13万 - 项目类别:
Programmable Multi-Target Detection Using an Aptamer-Integrated Nanopore
使用适配体集成纳米孔进行可编程多目标检测
- 批准号:
7193327 - 财政年份:2007
- 资助金额:
$ 29.13万 - 项目类别:
Programmable Multi-Target Detection Using an Aptamer-Integrated Nanopore
使用适配体集成纳米孔进行可编程多目标检测
- 批准号:
7765560 - 财政年份:2007
- 资助金额:
$ 29.13万 - 项目类别:
相似国自然基金
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
利用分子装订二硫键新策略优化改造α-芋螺毒素的研究
- 批准号:82104024
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CST蛋白复合体在端粒复制中对端粒酶移除与C链填补调控的分子机制研究
- 批准号:31900521
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Wdr47蛋白在神经元极化中的功能及作用机理的研究
- 批准号:31900503
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
ID1 (Inhibitor of DNA binding 1) 在口蹄疫病毒感染中作用机制的研究
- 批准号:31672538
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
Examining the Function of a Novel Protein in the Cardiac Junctional Membrane Complex
检查心脏连接膜复合体中新型蛋白质的功能
- 批准号:
10749672 - 财政年份:2024
- 资助金额:
$ 29.13万 - 项目类别:
Sestrins-mediated integration of leucine and exercise benefits for mitochondrial homeostasis
Sestrins介导的亮氨酸整合和运动对线粒体稳态的益处
- 批准号:
10734830 - 财政年份:2023
- 资助金额:
$ 29.13万 - 项目类别:
Engineered tissue arrays to streamline deimmunized DMD gene therapy vectors
工程组织阵列可简化去免疫 DMD 基因治疗载体
- 批准号:
10724882 - 财政年份:2023
- 资助金额:
$ 29.13万 - 项目类别:
Protein Transport Across Membrane by Bacterial Pathogens
细菌病原体跨膜蛋白质运输
- 批准号:
10711479 - 财政年份:2023
- 资助金额:
$ 29.13万 - 项目类别: