Protein Transport Across Membrane by Bacterial Pathogens
细菌病原体跨膜蛋白质运输
基本信息
- 批准号:10711479
- 负责人:
- 金额:$ 38.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-07 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:Antibiotic ResistanceBacteriaBacterial InfectionsBindingBiochemicalBiologicalBiological AssayBiological ModelsBiophysicsCarrier ProteinsCell secretionCellsComplementComplexCoupledCryoelectron MicroscopyDefectDevelopmentDiseaseEngineeringEnvironmentEnzyme KineticsEukaryotic CellFamilyFoundationsGene DeliveryGeneticHydrolysisImmune systemIn VitroInfectionInfection preventionKineticsLabelLegionella pneumophilaLegionnaires&apos DiseaseMembraneMolecularMotorNucleic AcidsNutrientOrganellesPathogenesisPeptide Signal SequencesPharmaceutical PreparationsProcessProtein translocationProteinsReactionResearch Project SummariesResolutionScientistStructureSystemTestingTherapeuticThermodynamicsType IV Secretion System PathwayVirulenceVirulence FactorsWorkbiophysical analysisdesignexperimental studyextracellularfightinggenetic approachinsightmacromoleculenew technologynext generationpathogenic bacteriaprotein transportpublic health relevanceresistance generesponsetargeted deliverytherapeutic proteintooltrafficking
项目摘要
Project Summary
This research seeks to understand the fundamental process of protein translocation across membrane
barriers in bacteria. To establish an infection or exchange antibiotic resistance genes, bacteria must transport
macromolecules including protein across multiple membrane barriers: their own and the host cell’s.
In response to the universal requirement for macromolecule export, bacteria have evolved elaborate
machineries called secretion systems that use energy to move macromolecules from the bacterial cell out into
the extracellular milieu or directly into a host cell. In this proposal, I focus on the Type IV secretion system
(T4SS). This family of secretion systems is unique in that there are T4SSs that can transport nucleic acid
and/or protein cargo. As an important example of a T4SS, I will first investigate the defect in organelle
trafficking / intracellular multiplication (Dot/Icm) T4SS in Legionella pneumophila. This system is essential for
pathogenesis, which can result in the potentially fatal pneumonia Legionnaires’ Disease. The Dot/Icm T4SS is
composed of 30 proteins in different copy numbers. It secretes over 300 protein substrates in order to evade
the host cell’s immune system and scavenge nutrients. This represents a much larger repertoire of substrates
than observed in other secretion systems that transport proteins out of the bacterial cell. Thus, the Dot/Icm
T4SS is an ideal model system for determining how these numerous substrates are engaged and transported.
Protein transport by T4SSs has traditionally been studied using cell-based assays. The cellular environment,
however, does not allow for precise control and manipulation of reaction conditions. The field needs rigorous
biophysical assays with which to dissect the molecular mechanism of protein translocation. I propose to
combine determination of high-resolution structures of the Dot/Icm T4SS by cryoEM and
thermodynamics and enzyme kinetics studies of the system. These approaches will complement
traditional genetic and cell biological strategies and will lead to mechanistic insights into how this secretion
system transports protein. For example, transient state kinetics experiments observing the ATP-dependent
translocation of a fluorescently labeled substrate protein will answer questions such as “which signal
sequences are recognized by which motor protein(s),” “are protein substrates unfolded during transport,” and
“which kinetic steps are coupled to ATP binding and hydrolysis?”
This approach to investigating complex cellular machinery by integrating biochemical, biophysical, structural,
and genetic approaches will shed new light on the fundamental process of translocation across multiple
membranes, an important feature of bacterial pathogenesis. While this work aims to understand the
fundamental mechanism of protein translocation, our findings could lay the foundation for scientists to develop
anti-virulence drugs, the next generation of tools fighting bacterial disease, and to engineer the targeted
delivery of gene and protein therapeutics to eukaryotic cells by secretion systems.
项目概要
这项研究旨在了解蛋白质跨膜易位的基本过程
为了建立感染或交换抗生素抗性基因,细菌必须转运。
大分子,包括跨越多个膜屏障的蛋白质:它们自己的和宿主细胞的。
为了满足大分子输出的普遍要求,细菌进化出了复杂的
称为分泌系统的机器,利用能量将大分子从细菌细胞转移到
细胞外环境或直接进入宿主细胞 在本提案中,我重点关注 IV 型分泌系统。
(T4SS) 该分泌系统家族的独特之处在于存在可以运输核酸的 T4SS。
作为 T4SS 的一个重要例子,我将首先研究细胞器的缺陷。
嗜肺军团菌中的运输/细胞内增殖 (Dot/Icm) T4SS 该系统对于嗜肺军团菌至关重要。
发病机制,可能导致潜在致命的肺炎军团病 Dot/Icm T4SS。
它由 30 种不同拷贝数的蛋白质组成,为了逃避而分泌 300 多种蛋白质底物。
宿主细胞的免疫系统和清除营养物质,这代表了更大的底物库。
比在将蛋白质转运出细菌细胞的其他分泌系统中观察到的要多,因此,Dot/Icm。
T4SS 是一个理想的模型系统,用于确定这些众多基材如何接合和运输。
传统上,T4SS 的蛋白质转运是通过细胞环境进行研究的。
然而,不允许对反应条件进行精确控制和操纵,该领域需要严格的条件。
我建议用生物物理分析来剖析蛋白质易位的分子机制。
通过冷冻电镜结合确定 Dot/Icm T4SS 的高分辨率结构和
这些方法将补充系统的热力学和酶动力学研究。
传统的遗传和细胞生物学策略,并将导致对这种分泌如何进行机制的深入了解
例如,观察 ATP 依赖性的瞬态动力学实验。
荧光标记的底物蛋白的易位将回答诸如“哪个信号
序列由哪些运动蛋白识别”,“是在运输过程中展开的蛋白质底物”,以及
“哪些动力学步骤与 ATP 结合和水解相关?”
这种方法通过整合生物化学、生物物理、结构、
遗传方法将为跨多个易位的基本过程提供新的线索
膜,细菌发病机制的一个重要特征,而这项工作旨在了解
蛋白质易位的基本机制,我们的发现可以为科学家开发奠定基础
抗毒药物,对抗细菌性疾病的下一代工具,并设计靶向药物
通过分泌系统将基因和蛋白质治疗剂递送至真核细胞。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Clarissa Lynn Durie其他文献
Clarissa Lynn Durie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Clarissa Lynn Durie', 18)}}的其他基金
Structural and functional studies of the Legionella pneumophila dot T4SS
嗜肺军团菌 dot T4SS 的结构和功能研究
- 批准号:
9910576 - 财政年份:2020
- 资助金额:
$ 38.08万 - 项目类别:
Structural and functional studies of the Legionella pneumophila dot T4SS
嗜肺军团菌 dot T4SS 的结构和功能研究
- 批准号:
10084702 - 财政年份:2020
- 资助金额:
$ 38.08万 - 项目类别:
相似国自然基金
基于共价有机框架的噬菌体-光催化协同靶向抗菌策略用于顽固性细菌感染的研究
- 批准号:22378279
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
“持续化学发光与多效抗菌”复合探针的构筑及其关节假体周围感染细菌的检测与灭活研究
- 批准号:82302646
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠道类器官模型探讨T6SS在细菌感染过程中对宿主MAPK信号通路的调控作用及机制研究
- 批准号:32300597
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于气味感知和知识迁移的伤口感染细菌精准识别方法研究
- 批准号:62301102
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
双特异性抗体囊泡对胞内细菌感染的免疫综合机制研究
- 批准号:82304366
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Bioengineering Phage-based Biosensors with Genetic Specificity and High Sensitivity
具有遗传特异性和高灵敏度的生物工程噬菌体生物传感器
- 批准号:
10727412 - 财政年份:2023
- 资助金额:
$ 38.08万 - 项目类别:
Mining the phage playbook to create a potent, generic phage therapy
挖掘噬菌体剧本以创建有效的通用噬菌体疗法
- 批准号:
10723647 - 财政年份:2023
- 资助金额:
$ 38.08万 - 项目类别:
Gauging how the plasticity of cellular organizations dictates growth, death and adaptation in single bacterial cells
测量细胞组织的可塑性如何决定单个细菌细胞的生长、死亡和适应
- 批准号:
10715370 - 财政年份:2023
- 资助金额:
$ 38.08万 - 项目类别:
Innate lymphocyte responses to early-life infections
先天淋巴细胞对生命早期感染的反应
- 批准号:
10716092 - 财政年份:2023
- 资助金额:
$ 38.08万 - 项目类别:
Novel antimicrobials to combat Gram-negative bacteria
对抗革兰氏阴性菌的新型抗菌剂
- 批准号:
10888456 - 财政年份:2023
- 资助金额:
$ 38.08万 - 项目类别: