Automatic discovery and processing of EEG cohorts from clinical records
从临床记录中自动发现和处理脑电图队列
基本信息
- 批准号:8876239
- 负责人:
- 金额:$ 45.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-06-01 至 2018-05-31
- 项目状态:已结题
- 来源:
- 关键词:Accident and Emergency departmentArchivesAreaBasic ScienceBig DataBilateralBiomedical EngineeringBlinkingCerebrumClinicalClinical DataClinical ResearchClinical TreatmentCodeComparative StudyComputer softwareComputerized Medical RecordCountryDataDevelopmentDiagnosisDiffuseDischarge from eyeElectroencephalographyEpilepsyEvaluationEventExclusion CriteriaFeedbackFrequenciesFunctional disorderGenerationsGoalsGraphHospitalsImageJudgmentKnowledgeLanguageLearningLifeLinkMeasurementMedicalMedical InformaticsMedical RecordsMedical StudentsMiningModalityModelingMorphologic artifactsMultimediaNatureNeurosciencesOutcomePatientsPatternPhysiciansProcessProtocols documentationQualifyingRecordsReportingResearchResearch PersonnelResearch SupportResourcesRetrievalRoleSignal TransductionSolutionsSystemTechniquesTestingTextTimeTrainingUniversity HospitalsValidationbasecareercohortcomparativecomparative effectivenessdesigneffectiveness researchinclusion criteriainformation organizationlanguage processingnovelpublic health relevancerepository
项目摘要
DESCRIPTION (provided by applicant): Electronic medical records (EMRs) collected at every hospital in the country collectively contain a staggering wealth of biomedical knowledge. EMRs can include unstructured text, temporally constrained measurements (e.g., vital signs), multichannel signal data (e.g., EEGs), and image data (e.g., MRIs). This information could be transformative if properly harnessed. Information about patient medical problems, treatments, and clinical course is essential for conducting comparative effectiveness research. Uncovering clinical knowledge that enables comparative research is the primary goal of this proposal. We will focus on the automatic interpretation of clinical EEGs collected over 12 years at Temple University Hospital (over 25,000 sessions and 15,000 patients). Clinicians will be able to retrieve
relevant EEG signals and EEG reports using standard queries (e.g. "Young patients with focal cerebral dysfunction who were treated with Topamax"). In Aim 1 we will automatically annotate EEG events that contribute to a diagnosis. We will develop automated techniques to discover and time-align the underlying EEG events using semi-supervised learning. In Aim 2 we will process the text from the EEG reports using state-of-the-art clinical language processing techniques. Clinical concepts, their type, polarity and modality shall be discovered automatically,
as well as spatial and temporal information. In addition, we shall extract the medical concepts describing the clinical picture of patients from the EEG reports. In Aim 3, we will develop a patient cohort retrieval system that will operate on the clinical knowledge extracted in Aims 1 and 2. In addition we shall organize this knowledge in a unified representation: the Qualified Medical Knowledge Graph (QMKG), which will be built using BigData solutions through MapReduce. The QMKG will be able to be searched by biomedical researchers as well as practicing clinicians. The QMKG will also provide a characterization of the way in which events in an EEG are narrated by physicians and the validation of these across a BigData resource. The EMKG represents an important contribution to basic science. In Aim 4 we will validate the usefulness of the patient cohort identification system by collecting feedback from clinicians and medical students who will participate in a rigorous evaluation protocol. Inclusion and exclusion criteria for the queries shall be designed and experts will provide relevance judgments for the results. For each query, medical experts shall examine the top-ranked cohorts for common precision errors (false positives) and the bottom five ranked common recall errors (false negatives). User validation testing will be performed using live clinical data and the feedback wil enhance the quality of the cohort identification system. The existence of an annotated BigData archive of EEGs will greatly increase accessibility for non- experts in neuroscience, bioengineering and medical informatics who would like to study EEG data. The creation of this resource through the development of efficient automated data wrangling techniques will demonstrate that a much wider range of BigData bioengineering applications are now tractable.
描述(由申请人提供):该国每家医院收集的电子病历 (EMR) 总共包含数量惊人的生物医学知识,其中包括非结构化文本、时间受限的测量数据(例如生命体征)、多通道信号数据(例如生命体征)。如果正确利用有关患者医疗问题、治疗和临床过程的信息,这些信息对于进行治疗至关重要。揭示可进行比较研究的临床知识是该提案的主要目标,我们将重点关注天普大学医院 12 年来收集的临床脑电图(临床医生将能够进行超过 25,000 次治疗)。检索
使用标准查询的相关脑电图信号和脑电图报告(例如“接受 Topamax 治疗的局灶性脑功能障碍的年轻患者”),我们将自动注释有助于诊断的脑电图事件。我们将开发自动化技术来发现和计时。 -使用半监督学习来调整基础脑电图事件 在目标 2 中,我们将使用最先进的临床语言处理技术来处理脑电图报告中的文本,其类型、极性和模式应为。自动发现,
此外,我们将从 EEG 报告中提取描述患者临床情况的医学概念,我们将开发一个患者队列检索系统,该系统将根据 Aims 中提取的临床知识进行操作。 1 和 2。此外,我们将以统一的表示形式组织这些知识:合格的医学知识图(QMKG),它将通过 MapReduce 使用大数据解决方案构建。QMKG 将能够通过 MapReduce 进行搜索。 QMKG 还将提供医生描述脑电图事件的方式,并通过大数据资源验证这些事件,这代表了对基础科学的重要贡献。 4 我们将通过收集参与严格评估方案的教区居民和医学生的反馈来验证患者队列识别系统的有用性,并由专家对每个结果提供相关判断。查询时,医学专家将检查排名靠前的队列的常见精确度错误(假阳性)和排名靠后的五个常见召回错误(假阴性),将使用实时临床数据进行用户验证测试,反馈将提高查询的质量。带有注释的脑电图大数据档案的存在将极大地提高那些想要研究脑电图数据的非神经科学、生物工程和医学信息学专家的可访问性。通过开发高效的自动化数据来创建该资源。争论技术将证明更广泛的大数据生物工程应用现在是易于处理的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sanda Maria Harabagiu其他文献
Sanda Maria Harabagiu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sanda Maria Harabagiu', 18)}}的其他基金
Scalable EEG interpretation using Deep Learning and Schema Descriptors
使用深度学习和模式描述符的可扩展脑电图解释
- 批准号:
9243724 - 财政年份:2015
- 资助金额:
$ 45.99万 - 项目类别:
相似国自然基金
科学基金档案资料信息化管理探索与实践研究
- 批准号:
- 批准年份:2022
- 资助金额:10 万元
- 项目类别:
零信任架构下的电子健康档案动态共享研究
- 批准号:72274077
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
胶州湾河口湿地盾纤亚纲纤毛虫的多样性研究与档案资料建立
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
医联体内电子健康档案应用绩效提升研究:影响因素、动力系统与治理机制
- 批准号:72164037
- 批准年份:2021
- 资助金额:28 万元
- 项目类别:地区科学基金项目
基于基金项目全生命周期的档案规范化管理探索与实践研究
- 批准号:52142301
- 批准年份:2021
- 资助金额:10 万元
- 项目类别:专项基金项目
相似海外基金
Multiplexed Point Of Care Nucleic Acid Assay for STI
STI 多重护理点核酸检测
- 批准号:
9074908 - 财政年份:2016
- 资助金额:
$ 45.99万 - 项目类别:
Scalable EEG interpretation using Deep Learning and Schema Descriptors
使用深度学习和模式描述符的可扩展脑电图解释
- 批准号:
9243724 - 财政年份:2015
- 资助金额:
$ 45.99万 - 项目类别:
A Paper-Digital Interface for Time-Critical Information Management
用于时间关键信息管理的纸质数字接口
- 批准号:
8386105 - 财政年份:2012
- 资助金额:
$ 45.99万 - 项目类别:
A Study of Social Web Data on Buprenorphine Abuse Using Semantic Web Technology
利用语义网技术研究丁丙诺啡滥用的社交网络数据
- 批准号:
8269958 - 财政年份:2011
- 资助金额:
$ 45.99万 - 项目类别:
A Study of Social Web Data on Buprenorphine Abuse Using Semantic Web Technology
利用语义网技术研究丁丙诺啡滥用的社交网络数据
- 批准号:
8190799 - 财政年份:2011
- 资助金额:
$ 45.99万 - 项目类别: