A Study of Social Web Data on Buprenorphine Abuse Using Semantic Web Technology
利用语义网技术研究丁丙诺啡滥用的社交网络数据
基本信息
- 批准号:8190799
- 负责人:
- 金额:$ 21.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-07-01 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:Accident and Emergency departmentArchivesAreaBehaviorBuprenorphineCodeCollaborationsCommunitiesComplementComplexDataData SourcesDrug Rehabilitation CentersDrug abuseDrug usageDrug userEarly identificationEpidemiologic MonitoringEpidemiologic StudiesEpidemiologyFaceHealthHealth Knowledge, Attitudes, PracticeHealth ProfessionalHeroin DependenceHospitalsIllicit DrugsIndividualInformation SciencesInformation ServicesInformation SystemsInternetInterventionIntervention StudiesInterviewKnowledgeLabelLanguageLinkMachine LearningManualsMeasuresMethodsMonitorNIH Program AnnouncementsNaloxoneNatural Language ProcessingOnline SystemsOpioidOverdosePathway interactionsPatternPharmaceutical PreparationsPharmacologic SubstancePoison Control CentersPoliciesPopulationPreventionPrincipal InvestigatorProcessPublic HealthPublished CommentQualitative ResearchReadingRelianceResearchResearch MethodologyResearch PersonnelSamplingSelection BiasSelf DisclosureSemanticsSourceSubstance abuse problemSubutexSurveillance MethodsSurveysSystemTechniquesTechnologyTextTimeUniversitiesaddictionbuprenorphine abusecomputer based Semantic Analysisdesignemotional disclosureempoweredexperienceinformantinformation processingmisuse of prescription only drugspopulation surveypost-marketprescription drug abuseprogramsresponsesocialtooltrendweb siteworking group
项目摘要
DESCRIPTION (provided by applicant): The non-medical use of pharmaceutical opioids has been identified as one of the fastest growing forms of drug abuse in the U.S. There is a critical need to enhance current epidemiological monitoring, early warning, and post-marketing surveillance systems by providing additional and more timely data. The World Wide Web has been identified as one of the "leading edge" data sources for detecting patterns and changes in drug use practices. Many websites provide a venue for individuals to freely share their own experiences, post questions, and offer comments about different drugs. Such User Generated Content (UGC) can be used as a very rich data source to study knowledge, attitudes, and behaviors related to illicit drugs. To harness the full potential of the Web for drug abuse research, the field needs to develop a highly automated way of accessing, extracting, and analyzing Web-based data related to illicit drug use. This exploratory R21 is a multi-principal investigator, collaborative effort between researchers at the Center for Interventions, Treatment and Addictions Research (CITAR) and the Center for Knowledge-Enabled Information Services and Science (Kno.e.sis) at Wright State University. The purpose of this Web-based study is to apply cutting-edge information processing techniques, such as the Semantic Web, Natural Language Processing, and Machine Learning, to qualitative and quantitative content analysis of user generated content to achieve the following aims: 1) Describe drug users' knowledge, attitudes, and behaviors related to the illicit use of Suboxone(R) (buprenorphine/naloxone) and Subutex(R) (buprenorphine); 2) Identify and describe temporal patterns of the illicit use of these drugs as reflected on web-based forums. To collect data, the study will use websites that allow for the free discussion of illicit drugs, contain information on illicit prescription drug use, and are accessible for public viewing. The study will generate new information about the practices of buprenorphine abuse and will contribute to the advancement of public health and substance abuse research by providing automatic coding and information extraction tools needed to handle rapidly growing Web-based data. Automated information extraction methods applied in this study will enhance current early warning and epidemiological surveillance systems and could advance qualitative and Web-based research methods in other areas of public health.
PUBLIC HEALTH RELEVANCE: Building on inter-disciplinary collaboration and cutting-edge information processing techniques, this exploratory, Web-based study will generate new information about Suboxone(R) (buprenorphine/naloxone) and Subutex(R) (buprenorphine) abuse practices, thereby informing public health interventions and policy. It will also contribute to the advancement of public health and substance abuse research methods by providing automatic coding and information extraction tools needed to handle rapidly growing Web-based data.
描述(由申请人提供):阿片类药物的非医疗用途已被确定为美国增长最快的药物滥用形式之一。迫切需要加强当前的流行病学监测、早期预警和上市后监测系统通过提供额外的和更及时的数据。万维网已被确定为检测吸毒行为模式和变化的“前沿”数据源之一。许多网站为个人提供了一个自由分享自己的经验、发布问题并提供有关不同药物的评论的场所。此类用户生成内容(UGC)可以作为非常丰富的数据源来研究与非法药物相关的知识、态度和行为。为了充分利用网络进行药物滥用研究的潜力,该领域需要开发一种高度自动化的方法来访问、提取和分析与非法药物使用相关的基于网络的数据。这项探索性的 R21 是莱特州立大学干预、治疗和成瘾研究中心 (CITAR) 和知识支持信息服务和科学中心 (Kno.e.sis) 的研究人员共同努力的多学科研究者的合作成果。这项基于网络的研究的目的是应用尖端的信息处理技术,如语义网、自然语言处理和机器学习,对用户生成的内容进行定性和定量的内容分析,以实现以下目标:1)描述吸毒者与非法使用 Suboxone(R)(丁丙诺啡/纳洛酮)和 Subutex(R)(丁丙诺啡)相关的知识、态度和行为; 2) 识别并描述网络论坛上反映的非法使用这些药物的时间模式。为了收集数据,该研究将使用允许自由讨论非法药物、包含非法处方药使用信息并可供公众查看的网站。该研究将产生有关丁丙诺啡滥用行为的新信息,并将通过提供处理快速增长的网络数据所需的自动编码和信息提取工具,为公共卫生和药物滥用研究的进步做出贡献。本研究中应用的自动信息提取方法将增强当前的预警和流行病学监测系统,并可以推进公共卫生其他领域的定性和基于网络的研究方法。
公共卫生相关性:这项基于网络的探索性研究以跨学科合作和尖端信息处理技术为基础,将产生有关 Suboxone(R)(丁丙诺啡/纳洛酮)和 Subutex(R)(丁丙诺啡)滥用行为的新信息,从而为公共卫生干预措施和政策提供信息。它还将通过提供处理快速增长的网络数据所需的自动编码和信息提取工具,为公共卫生和药物滥用研究方法的进步做出贡献。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Raminta Daniulaityte其他文献
Raminta Daniulaityte的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Raminta Daniulaityte', 18)}}的其他基金
Counterfeit Pharmaceuticals: Increased Risks in the Era of Novel Synthetic Opioids and Other Designer Drugs
假冒药品:新型合成阿片类药物和其他设计药物时代的风险增加
- 批准号:
10506025 - 财政年份:2022
- 资助金额:
$ 21.9万 - 项目类别:
Counterfeit Pharmaceuticals: Increased Risks in the Era of Novel Synthetic Opioids and Other Designer Drugs
假冒药品:新型合成阿片类药物和其他设计药物时代的风险增加
- 批准号:
10598621 - 财政年份:2022
- 资助金额:
$ 21.9万 - 项目类别:
Varenicline OTC Trial on Efficacy and Safety
伐尼克兰非处方药疗效和安全性试验
- 批准号:
10174897 - 财政年份:2017
- 资助金额:
$ 21.9万 - 项目类别:
A Natural History Study of Buprenorphine Diversion, Self-Treatment, and Use of Drug Abuse Treatment Services
丁丙诺啡转移、自我治疗和药物滥用治疗服务使用的自然史研究
- 批准号:
9175607 - 财政年份:2016
- 资助金额:
$ 21.9万 - 项目类别:
Characterizing fentanyl outbreaks: Ethnographic and forensic perspectives
芬太尼爆发的特征:人种学和法医学的观点
- 批准号:
9220923 - 财政年份:2016
- 资助金额:
$ 21.9万 - 项目类别:
Characterizing fentanyl outbreaks: Ethnographic and forensic perspectives
芬太尼爆发的特征:人种学和法医学的观点
- 批准号:
9296109 - 财政年份:2016
- 资助金额:
$ 21.9万 - 项目类别:
Trending: Social media analysis to monitor cannabis and synthetic cannabinoid use
趋势:监测大麻和合成大麻素使用的社交媒体分析
- 批准号:
8913112 - 财政年份:2014
- 资助金额:
$ 21.9万 - 项目类别:
A Study of Social Web Data on Buprenorphine Abuse Using Semantic Web Technology
利用语义网技术研究丁丙诺啡滥用的社交网络数据
- 批准号:
8269958 - 财政年份:2011
- 资助金额:
$ 21.9万 - 项目类别:
相似国自然基金
科学基金档案资料信息化管理探索与实践研究
- 批准号:
- 批准年份:2022
- 资助金额:10 万元
- 项目类别:
零信任架构下的电子健康档案动态共享研究
- 批准号:72274077
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
胶州湾河口湿地盾纤亚纲纤毛虫的多样性研究与档案资料建立
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
医联体内电子健康档案应用绩效提升研究:影响因素、动力系统与治理机制
- 批准号:72164037
- 批准年份:2021
- 资助金额:28 万元
- 项目类别:地区科学基金项目
基于基金项目全生命周期的档案规范化管理探索与实践研究
- 批准号:52142301
- 批准年份:2021
- 资助金额:10 万元
- 项目类别:专项基金项目
相似海外基金
Multiplexed Point Of Care Nucleic Acid Assay for STI
STI 多重护理点核酸检测
- 批准号:
9074908 - 财政年份:2016
- 资助金额:
$ 21.9万 - 项目类别:
Scalable EEG interpretation using Deep Learning and Schema Descriptors
使用深度学习和模式描述符的可扩展脑电图解释
- 批准号:
9243724 - 财政年份:2015
- 资助金额:
$ 21.9万 - 项目类别:
Automatic discovery and processing of EEG cohorts from clinical records
从临床记录中自动发现和处理脑电图队列
- 批准号:
8876239 - 财政年份:2015
- 资助金额:
$ 21.9万 - 项目类别:
A Paper-Digital Interface for Time-Critical Information Management
用于时间关键信息管理的纸质数字接口
- 批准号:
8386105 - 财政年份:2012
- 资助金额:
$ 21.9万 - 项目类别:
A Study of Social Web Data on Buprenorphine Abuse Using Semantic Web Technology
利用语义网技术研究丁丙诺啡滥用的社交网络数据
- 批准号:
8269958 - 财政年份:2011
- 资助金额:
$ 21.9万 - 项目类别: