Control of microtubule length by polymerases and depolymerases
通过聚合酶和解聚酶控制微管长度
基本信息
- 批准号:8842141
- 负责人:
- 金额:$ 40.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-05-01 至 2018-02-28
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAneuploidyBiochemicalBiological AssayBiological ModelsBiophysicsBrainCell divisionCellsCellular biologyChromosome SegregationChromosomesComputer SimulationCongenital AbnormalityDaughterEnergy-Generating ResourcesEnsureEquilibriumFeedbackFilamentFilopodiaG1/S TransitionGenesGeneticGrantGrowthGuanosine TriphosphateHealthHomologous GeneHydrolysisInheritedKinesinLeadLengthMeasurementMeasuresMethodsMicrotubule DepolymerizationMicrotubule-Associated ProteinsMicrotubulesMitosisMitotic spindleMolecularMolecular and Cellular BiologyMorphologyMothersMotorNeuronsOrganellesPhasePolymerasePolymersPost-Translational Protein ProcessingPropertyProtein IsoformsProteinsRegulationRoleSaccharomycetalesSchemeStereociliumSystemTechniquesTestingTissuesTubulinWorkYeastsbasecancer cellcell motilitycellular microvillusgenetic analysishuman diseaseinsightmathematical modelnovelpolymerizationsegregationsingle moleculeyeast protein
项目摘要
DESCRIPTION (provided by applicant): A fundamental, but poorly understood, problem in cell biology is how the sizes of organelles are controlled. The lengths of mitotic spindles and axonemes, for example, vary by as little as a few per cent between cells of the same type. Furthermore, the correct size and morphology are essential for function-mitotic spindles for cell division and axonemes for motility. Cells regulate the sizes of these organelles by tightly controlling the lengths of their constituent microtubules. In the absence of a molecular ruler that
templates microtubule length, it is thought that length control results from a delicate balance between polymerization and depolymerization of the microtubules. How this is achieved is not known. Based on our previous work in which we showed that the motor kinesin-8 Kip3 is a length-dependent microtubule depolymerase, we hypothesize that motor proteins, in conjunction with other microtubule-associated proteins (MAPs), can provide feedback between length and dynamics that tightly regulates the lengths of microtubules. The general aim of this grant is to use single-molecule techniques, together with mathematical modeling, to understand how two additional proteins-the yeast kinesin Kip2 and the yeast homolog of the vertebrate polymerase XMAP215, Stu2-together with Kip3, regulate the lengths of yeast microtubules. We have devised a novel purification scheme for native budding-yeast tubulin and this allows us to employ yeast as our model system, which has distinct advantages due to the small number of tubulin isoforms and the absence of potentially confounding post-translational modifications found in vertebrate, and in particular brain, tubulin. Our specific aims are to (1) characterize te acceleration of growth of yeast microtubules by Stu2, (ii) determine how Kip2 promotes microtubule assembly, and (iii) examine the precision with which Kip3, in combination with Kip2 and Stu2, controls microtubule lengths. These studies will provide important insight into the assembly and function of the mitotic spindle and establish principles of length regulation that wil be applicable to other biomedically relevant organellar systems such axonemes, microvilli, stereocilia and filopodia.
描述(由申请人提供):细胞生物学中一个基本但知之甚少的问题是如何控制细胞器的大小。例如,同一类型细胞之间有丝分裂纺锤体和轴丝的长度差异只有百分之几。此外,正确的尺寸和形态对于细胞分裂的有丝分裂纺锤体和运动的轴丝至关重要。细胞通过严格控制其组成微管的长度来调节这些细胞器的大小。在没有分子标尺的情况下
模板微管长度,据认为长度控制是微管聚合和解聚之间微妙平衡的结果。这是如何实现的尚不清楚。基于我们之前的工作,我们表明运动驱动蛋白 8 Kip3 是一种长度依赖性微管解聚酶,我们假设运动蛋白与其他微管相关蛋白 (MAP) 结合,可以提供长度和动力学之间的反馈,严格调节微管的长度。 这项资助的总体目标是使用单分子技术和数学模型来了解另外两种蛋白质——酵母驱动蛋白 Kip2 和脊椎动物聚合酶 XMAP215 的酵母同源物 Stu2——与 Kip3 一起如何调节酵母微管。我们为天然出芽酵母微管蛋白设计了一种新颖的纯化方案,这使我们能够采用酵母作为我们的模型系统,由于微管蛋白亚型数量较少且不存在脊椎动物中发现的潜在混淆的翻译后修饰,因此该系统具有明显的优势,特别是大脑,微管蛋白。 我们的具体目标是 (1) 表征 Stu2 对酵母微管生长的加速作用,(ii) 确定 Kip2 如何促进微管组装,以及 (iii) 检查 Kip3 与 Kip2 和 Stu2 结合控制微管长度的精度。这些研究将为有丝分裂纺锤体的组装和功能提供重要的见解,并建立适用于其他生物医学相关细胞器系统(如轴丝、微绒毛、静纤毛和丝状伪足)的长度调节原理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathon Howard其他文献
Jonathon Howard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathon Howard', 18)}}的其他基金
Microtubule Severing and Regrowth by Spastin
Spastin 微管切断和再生
- 批准号:
10221743 - 财政年份:2020
- 资助金额:
$ 40.51万 - 项目类别:
Dendrite structure: Data-Driven Models to Bridge from Molecules to Morphology
树突结构:数据驱动模型连接分子和形态学
- 批准号:
10308521 - 财政年份:2020
- 资助金额:
$ 40.51万 - 项目类别:
Microtubule Severing and Regrowth by Spastin
Spastin 微管切断和再生
- 批准号:
10441383 - 财政年份:2020
- 资助金额:
$ 40.51万 - 项目类别:
Microtubule Severing and Regrowth by Spastin
Spastin 微管切断和再生
- 批准号:
10643705 - 财政年份:2020
- 资助金额:
$ 40.51万 - 项目类别:
Dendrite structure: Data-Driven Models to Bridge from Molecules to Morphology
树突结构:数据驱动模型连接分子和形态学
- 批准号:
10533281 - 财政年份:2020
- 资助金额:
$ 40.51万 - 项目类别:
Microtubule Severing and Regrowth by Spastin
Spastin 微管切断和再生
- 批准号:
10441383 - 财政年份:2020
- 资助金额:
$ 40.51万 - 项目类别:
Cell Biological Limitations Constrain Dendritic Branching Morphology and Neuronal Function
细胞生物学限制限制了树突分支形态和神经元功能
- 批准号:
9146993 - 财政年份:2015
- 资助金额:
$ 40.51万 - 项目类别:
Control of microtubule length by polymerases and depolymerases
通过聚合酶和解聚酶控制微管长度
- 批准号:
9220838 - 财政年份:2014
- 资助金额:
$ 40.51万 - 项目类别:
Control of microtubule length by polymerases and depolymerases
通过聚合酶和解聚酶控制微管长度
- 批准号:
8672892 - 财政年份:2014
- 资助金额:
$ 40.51万 - 项目类别:
MECHANICS OF KINESIN--MICROTUBULE-BASED MOTOR PROTEIN
驱动蛋白的机制——基于微管的运动蛋白
- 批准号:
3161023 - 财政年份:1990
- 资助金额:
$ 40.51万 - 项目类别:
相似国自然基金
肿瘤非整倍体悖论的新机制
- 批准号:82372721
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
非整倍体对卵巢癌免疫微环境的影响及其作为免疫治疗增效靶点的研究
- 批准号:82373401
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
生长激素通过JAK2/SHP2/ERK1/2通路降低老龄鼠卵母细胞非整倍体率的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
纺锤体组装检查点功能异常在胶质瘤非整倍体形成中的作用及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
非整倍体百合雌雄育性差异的细胞与分子机制研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
相似海外基金
Investigating the regulation and mechanism of tension-sensors Stu2 & Ndc80c
研究张力传感器 Stu2 的调节和机制
- 批准号:
10605085 - 财政年份:2023
- 资助金额:
$ 40.51万 - 项目类别:
Investigating the mechanism of self-organized cortical patterning in an artificial cortex
研究人工皮质中自组织皮质模式的机制
- 批准号:
10861462 - 财政年份:2023
- 资助金额:
$ 40.51万 - 项目类别:
Characterizing the role of tumor suppressor phase separation and chromatin organization in maintaining genomic integrity
表征肿瘤抑制相分离和染色质组织在维持基因组完整性中的作用
- 批准号:
10723739 - 财政年份:2023
- 资助金额:
$ 40.51万 - 项目类别: