Cell Biological Limitations Constrain Dendritic Branching Morphology and Neuronal Function

细胞生物学限制限制了树突分支形态和神经元功能

基本信息

  • 批准号:
    9146993
  • 负责人:
  • 金额:
    $ 83.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-21 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The general problem that I will address is how neurons integrate their inputs and compute their outputs. Central to integration and computation is the morphology of neurons, and in particular that of their highly branched dendritic arbors, which receive synaptic input from other neurons or sensory input from the outside world. The connections between axonal and dendritic processes define the nervous system's structure, which is viewed as a prerequisite for understanding neural function; connectomics, the global study of neuronal connectivity, has emerged as a major goal of neuroscience. In this Pioneer proposal, I want to take an orthogonal approach to neuronal morphology. My hypothesis is that the cell biology of the neuron-the transport and turnover of materials-places very strong constraints on both building and maintaining dendrites. Furthermore, I propose that these constraints are so strong that they actually compromise the functioning of neurons: I hypothesize, for example, that the changes in diameters of dendritic processes across branch junctions are dictated by transport constraints and that they actually degrade signal propagation. If this is true, then morphology is a compromise between cell biology and neuronal function, and determining the nature of the tradeoff is likely to provide key insight into connectivity. The morphological rules that I will uncover will provide powerful a prioris for determining connectivit maps, and may help to solve a major problem in connectomics: how well does the connectivity map need to be in order to understand the function? To test this hypothesis, one needs a system in which morphology can be measured precisely (and in the most general sense, which includes protein localization), where it can be manipulated in a controlled way, and where morphology can be correlated with function. The Class IV dendritic arborization mechanoreceptor of Drosophila larvae meets these requirements, and will be the initial focus of study. The experimental goals are: (i) to use light and electron microscopy to discover the full set of branching rules—that is, how diameters, angles, branch lengths, and protein & organelle distributions change over branch points. And: (ii) to use calcium and voltage recordings, together with behavior, to characterize the function of the neuron. The measurements will be done in wild-type flies and in mutants, in which the morphology has been modified using precise genetic manipulations. The theoretical goal is to determine the extent to which the observed anatomical and functional characteristics optimize transport and developmental constraints on the one hand, and signal processing constraints on the other hand. The theory will be done in close coordination with experiments performed in the same laboratory. The nature of the tradeoff between these conflicting costs and benefits will provide tremendous insight into neuronal architecture. This research, via the combination of precise experimental measurement and theoretical modeling, will add inestimably to our understanding of the relationship between form and function in the nervous system. We hope that principles will be found that apply broadly across nervous systems and that the principles will have practical value in the determination of the structure of neural networks.
描述(由申请人提供):我要解决的一般问题是神经元如何整合它们的输入并计算它们的输出整合和计算的核心是神经元的形态,特别是它们接收突触的高度分支的树突乔木的形态。来自其他神经元的输入或来自外部世界的感觉输入定义了神经系统的结构,这被视为理解神经功能的先决条件;神经连接的全球研究已成为神经科学的一个主要目标,在这个先锋提案中,我想对神经元形态采取正交方法。我的假设是神经元的细胞生物学——物质的运输和周转。此外,我认为这些限制如此之大,以至于实际上损害了神经元的功能:例如,我认为分支连接处的树突直径的变化是由以下因素决定的。如果这是真的,那么形态学是细胞生物学和神经功能之间的折衷,确定这种权衡的本质可能会为我将揭示的形态学规则提供关键的见解。将为确定连接图提供强大的先验,并可能有助于解决连接组学中的一个主要问题:连接图需要有多好才能理解功能? 为了检验这一假设,我们需要一个可以精确测量形态的系统(并且在大多数情况下) 一般意义上,包括蛋白质定位),它可以在哪里以受控方式进行操纵,以及在哪里 果蝇幼虫的 IV 类树突状机械感受器的形态与功能相关。 满足这些要求,并将成为最初的研究重点:(i)使用光和电子。 显微镜发现全套分支规则,即直径、角度、分支长度和蛋白质如何与 细胞器分布随着分支点的变化而变化:(ii) 使用钙和电压记录以及行为, 测量将在野生型果蝇和突变体中进行,其中 形态学已通过精确的遗传操作进行了修改,理论目标是确定其程度。 观察到的解剖和功能特征优化了对一个人的运输和发育限制 另一方面,信号处理的限制将与实验密切配合。 在同一实验室进行。 这些相互冲突的成本和收益之间的权衡本质将为我们提供深刻的见解 这项研究通过精确的实验测量和理论建模相结合, 我们希望这将极大地增进我们对神经系统形式与功能之间关系的理解。 将发现这些原则广泛适用于神经系统,并且这些原则将在以下方面具有实际价值: 神经网络结构的确定。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jonathon Howard其他文献

Jonathon Howard的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jonathon Howard', 18)}}的其他基金

Microtubule Severing and Regrowth by Spastin
Spastin 微管切断和再生
  • 批准号:
    10221743
  • 财政年份:
    2020
  • 资助金额:
    $ 83.25万
  • 项目类别:
Dendrite structure: Data-Driven Models to Bridge from Molecules to Morphology
树突结构:数据驱动模型连接分子和形态学
  • 批准号:
    10308521
  • 财政年份:
    2020
  • 资助金额:
    $ 83.25万
  • 项目类别:
Microtubule Severing and Regrowth by Spastin
Spastin 微管切断和再生
  • 批准号:
    10441383
  • 财政年份:
    2020
  • 资助金额:
    $ 83.25万
  • 项目类别:
Microtubule Severing and Regrowth by Spastin
Spastin 微管切断和再生
  • 批准号:
    10643705
  • 财政年份:
    2020
  • 资助金额:
    $ 83.25万
  • 项目类别:
Dendrite structure: Data-Driven Models to Bridge from Molecules to Morphology
树突结构:数据驱动模型连接分子和形态学
  • 批准号:
    10533281
  • 财政年份:
    2020
  • 资助金额:
    $ 83.25万
  • 项目类别:
Microtubule Severing and Regrowth by Spastin
Spastin 微管切断和再生
  • 批准号:
    10441383
  • 财政年份:
    2020
  • 资助金额:
    $ 83.25万
  • 项目类别:
Control of microtubule length by polymerases and depolymerases
通过聚合酶和解聚酶控制微管长度
  • 批准号:
    8842141
  • 财政年份:
    2014
  • 资助金额:
    $ 83.25万
  • 项目类别:
Control of microtubule length by polymerases and depolymerases
通过聚合酶和解聚酶控制微管长度
  • 批准号:
    9220838
  • 财政年份:
    2014
  • 资助金额:
    $ 83.25万
  • 项目类别:
Control of microtubule length by polymerases and depolymerases
通过聚合酶和解聚酶控制微管长度
  • 批准号:
    8672892
  • 财政年份:
    2014
  • 资助金额:
    $ 83.25万
  • 项目类别:
MECHANICS OF KINESIN--MICROTUBULE-BASED MOTOR PROTEIN
驱动蛋白的机制——基于微管的运动蛋白
  • 批准号:
    3161023
  • 财政年份:
    1990
  • 资助金额:
    $ 83.25万
  • 项目类别:

相似国自然基金

“共享建筑学”的时空要素及表达体系研究
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    63 万元
  • 项目类别:
    面上项目
基于城市空间日常效率的普通建筑更新设计策略研究
  • 批准号:
    51778419
  • 批准年份:
    2017
  • 资助金额:
    61.0 万元
  • 项目类别:
    面上项目
宜居环境的整体建筑学研究
  • 批准号:
    51278108
  • 批准年份:
    2012
  • 资助金额:
    68.0 万元
  • 项目类别:
    面上项目
The formation and evolution of planetary systems in dense star clusters
  • 批准号:
    11043007
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
新型钒氧化物纳米组装结构在智能节能领域的应用
  • 批准号:
    20801051
  • 批准年份:
    2008
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Histopathologic interrogation of laminar microcircuits underlying cognition in frontotemporal dementia
额颞叶痴呆认知层状微电路的组织病理学研究
  • 批准号:
    10643786
  • 财政年份:
    2023
  • 资助金额:
    $ 83.25万
  • 项目类别:
Characterizing the prevalence and nature of facial recognition deficits in non-proliferative diabetic retinopathy
描述非增殖性糖尿病视网膜病变中面部识别缺陷的患病率和性质
  • 批准号:
    10667781
  • 财政年份:
    2023
  • 资助金额:
    $ 83.25万
  • 项目类别:
Toward therapeutic targeting of liquid-liquid phase separation dynamics in skin
皮肤液-液相分离动力学的治疗靶向
  • 批准号:
    10679610
  • 财政年份:
    2023
  • 资助金额:
    $ 83.25万
  • 项目类别:
Examination of the cell biology of the synapse and behavior
突触和行为的细胞生物学检查
  • 批准号:
    10663514
  • 财政年份:
    2023
  • 资助金额:
    $ 83.25万
  • 项目类别:
Multi-scale feedbacks for robust organ development
多尺度反馈促进器官的健全发育
  • 批准号:
    10687672
  • 财政年份:
    2023
  • 资助金额:
    $ 83.25万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了