Infrared laser spectroscopy of mass-separated metabolites
质量分离代谢物的红外激光光谱
基本信息
- 批准号:8829876
- 负责人:
- 金额:$ 17.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-04-01 至 2018-01-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsBase SequenceBenchmarkingBindingBiochemicalBioinformaticsBiologicalBiological MarkersChemicalsColon CarcinomaComplexComplex MixturesComputational algorithmCouplingCustomDataDatabasesDevelopmentDiagnosticDiseaseFingerprintFreezingGoalsGoldHealthIonsLasersLinkLiquid ChromatographyMass Spectrum AnalysisMeasurementMethodologyMethodsMolecularMolecular ConformationPattern RecognitionPreventionProcessProteomicsResearchResolutionSamplingSpectrum AnalysisStructureTechniquesTechnologyTrainingabsorptionbasecomplex biological systemscryogenicsinfrared spectroscopyinnovationinsightinstrumentationmetabolomicsmolecular dynamicsnew technologynovelquantumresearch studytandem mass spectrometrytoolvibration
项目摘要
DESCRIPTION (provided by applicant): Challenge: Developments of enabling technologies underpin continuing advances in biomolecular research. For instance, mass spectrometry (MS)-based sequencing techniques have spurned proteomics research in the past decade. Currently, there is no "gold standard" technique in metabolomics that allows a routine characterization of the thousands of constituents contained in these samples. NMR is limited to the more abundant analytes due to sensitivity issues. On the other hand, MS is typically capable of detecting many more features, but is often not able to structurally characterize these molecules. Rationale: By coupling tunable infrared (IR) lasers to mass spectrometry instrumentation, the IR spectra of mass- separated ions can be recorded. IR laser spectroscopy of ions combines the high sensitivity and ability to analyze complex mixtures of MS with the enhanced structural information from vibrational spectroscopy. The technique hence allows a chemical elucidation of many unknowns based on diagnostic vibrations and IR spectral fingerprints. Aim 1: Development of cryogenic mass spectrometry and multiplexed IR spectroscopy. In order to make IR spectroscopy a useful bioanalytical tool for biomolecular ions, it is essential that the IR
spectra of analytes are well- resolved, and thus distinguishable, and that multiple analytes in mixtures can be probed simultaneously in a multiplexed fashion. We propose to develop a custom-built, cryogenic linear ion trap, where the ions are tagged with weakly-bound molecules (e.g. N2), which are selectively detached upon resonant IR absorption. Aim 2: IR spectroscopy of mass-separated metabolites. Our application of IR spectroscopy of biomolecules focuses on metabolites, where we expect the technique to have most potential. Control experiments on standard metabolites will establish how many analytes can be successfully probed in a multiplexed approach. The methodology will then be applied to selected metabolite samples from colon cancer studies, which have previously been analyzed by high- throughput liquid chromatography and high-resolution mass spectrometry. Aim 3: Structural elucidation of unknown metabolites by comparison to computed IR spectra and bioinformatics approaches. The ultimate goal of this proposal is to chemically characterize unknown biomarkers that cannot be identified by current MS approaches. This requires a comparison of the experimental data for each analyte, namely its mass and its IR spectrum, to putative matches from metabolite databases. The IR spectra of known standards (from aim 2) will serve as a training set and as a benchmark for implementing this identification methodology. Innovation and Impact: The techniques developed here are expected to have the largest impact in global metabolomics, where current tandem mass spectrometry methodologies limit the number of constituents that can be identified in these mixtures. We expect the enhanced structural information from vibrational spectroscopy to yield many new insights in biomarker discovery.
描述(由申请人提供): 挑战:使能技术的发展支撑着生物分子研究的不断进步。例如,在过去十年中,基于质谱 (MS) 的测序技术已经抛弃了蛋白质组学研究。目前,代谢组学中还没有“金标准”技术可以对这些样品中包含的数千种成分进行常规表征。由于灵敏度问题,NMR 仅限于更丰富的分析物。另一方面,MS 通常能够检测更多特征,但通常无法表征这些分子的结构。原理:通过将可调谐红外 (IR) 激光器与质谱仪器耦合,可以记录质量分离离子的红外光谱。离子红外激光光谱结合了 MS 的高灵敏度和分析复杂混合物的能力以及振动光谱的增强结构信息。因此,该技术可以根据诊断振动和红外光谱指纹对许多未知物进行化学阐明。目标 1:开发低温质谱和多重红外光谱。为了使红外光谱成为生物分子离子的有用生物分析工具,红外光谱至关重要
分析物的光谱分辨率良好,因此可区分,并且可以以多重方式同时探测混合物中的多种分析物。我们建议开发一种定制的低温线性离子阱,其中离子被弱结合分子(例如 N2)标记,这些分子在共振红外吸收时选择性分离。目标 2:质量分离的代谢物的红外光谱。我们对生物分子红外光谱的应用主要集中在代谢物上,我们预计该技术在代谢物方面最具潜力。标准代谢物的对照实验将确定在多重方法中可以成功探测多少分析物。然后,该方法将应用于结肠癌研究中选定的代谢物样本,这些样本之前已通过高通量液相色谱法和高分辨率质谱法进行了分析。目标 3:通过与计算的红外光谱和生物信息学方法进行比较,阐明未知代谢物的结构。该提案的最终目标是对当前 MS 方法无法识别的未知生物标志物进行化学表征。这需要将每种分析物的实验数据(即其质量和红外光谱)与代谢物数据库中的假定匹配进行比较。已知标准的红外光谱(来自目标 2)将作为训练集和实施该识别方法的基准。创新和影响:这里开发的技术预计将对全球代谢组学产生最大的影响,目前的串联质谱方法限制了这些混合物中可以识别的成分数量。我们期望振动光谱中增强的结构信息能够在生物标志物发现方面产生许多新的见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicolas C Polfer其他文献
Nicolas C Polfer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicolas C Polfer', 18)}}的其他基金
Infrared laser spectroscopy of mass-separated metabolites
质量分离代谢物的红外激光光谱
- 批准号:
8672493 - 财政年份:2014
- 资助金额:
$ 17.34万 - 项目类别:
相似国自然基金
基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
- 批准号:82304250
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多模态高层语义驱动的深度伪造检测算法研究
- 批准号:62306090
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高精度海表反照率遥感算法研究
- 批准号:42376173
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于新型深度学习算法和多组学研究策略鉴定非编码区剪接突变在肌萎缩侧索硬化症中的分子机制
- 批准号:82371878
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于深度学习与水平集方法的心脏MR图像精准分割算法研究
- 批准号:62371156
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
The construction and utility of reference pan-genome graphs
参考泛基因组图的构建和利用
- 批准号:
10777673 - 财政年份:2023
- 资助金额:
$ 17.34万 - 项目类别:
Noninvasive prediction of skin precancer severity using in vivo cellular imaging and deep learning algorithms.
使用体内细胞成像和深度学习算法无创预测皮肤癌前病变的严重程度。
- 批准号:
10761578 - 财政年份:2023
- 资助金额:
$ 17.34万 - 项目类别:
m6A-suite: an informatics pipeline and resource for elucidating roles of m6A epitranscriptome in cancer
m6A-suite:用于阐明 m6A 表观转录组在癌症中的作用的信息学管道和资源
- 批准号:
10645584 - 财政年份:2023
- 资助金额:
$ 17.34万 - 项目类别:
Previvors Recharge: A Resilience Program for Cancer Previvors
癌症预防者恢复活力计划:癌症预防者恢复力计划
- 批准号:
10698965 - 财政年份:2023
- 资助金额:
$ 17.34万 - 项目类别: