New Techniques for Measuring Volumetric Structural Changes in Glaucoma

测量青光眼体积结构变化的新技术

基本信息

  • 批准号:
    8786916
  • 负责人:
  • 金额:
    $ 24.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-01-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

ABSTRACT This K99/R00 application supports additional research training in computational mathematics and computer vision which will enable Dr. Madhusudhanan Balasubramanian-the applicant, to become an independent multidisciplinary investigator in computational ophthalmology. Specifically, in the K99 training phase of this grant, Dr. Balasubramanian will train at UC San Diego under the direction of Linda Zangwill PhD, an established glaucoma clinical researcher in the Department of Ophthalmology, as well as a team of co- mentors, including, Dr. Michael Holst from the Department of Mathematics and co-director for the Center for Computational Mathematics, and co-director of the Comptutational Science, Mathematics and Engineering and Dr. David Kriegman from Computer Science and Engineering. Training will be conducted via formal coursework, hands-on lab training, mentored research, progress review by an advisory committee, visiting collaborating researchers and regular attendance at seminars and workshops. The subsequent R00 independent research phase involves applying Dr. Balasubramanian's newly acquired computational techniques to the difficult task of identifying glaucomatous change over time from optical images of the optic nerve head and retinal nerve fiber layer. A documented presence of progressive optic neuropathy is the best gold standard currently available for glaucoma diagnosis. Confocal Scanning Laser Ophthalmoscope (CSLO) and Spectral Domain Optical Coherence Tomography (SD-OCT) are two of the optical imaging instruments available for monitoring the optic nerve head health in glaucoma diagnosis and management. Currently, several statistical and computational techniques are available for detecting localized glaucomatous changes from the CSLO exams. SD-OCT is a new generation ophthalmic imaging instrument based on the principle of optical interferometry. In contrast to the CSLO technology, SDOCT can resolve retinal layers from the internal limiting membrane (ILM) through the Bruch's membrane and can capture the 3-D architecture of the optic nerve head at a very high resolution. These high-resolution, high-dimensional volume scans introduce a new level of data complexity not seen in glaucoma progression analysis before and therefore, powerful (high-performance) computational techniques are required to fully utilize the high precision retinal measurements for glaucoma diagnosis. The central focus of this application in the K99 mentored phase of the application will be in 1) developing computational and statistical techniques for detecting structural glaucomatous changes in various retinal layers from the SDOCT scans, and 2) developing a new avenue of research in glaucoma management where in strain in retinal layers will be estimated non-invasively to characterize glaucomatous progression. In the R00 independent phase, the specific aims focus on developing 1) statistical and computational techniques for detecting volumetric glaucomatous change over time using 3-D SD-OCT volume scans and 2) a computational framework to estimate full-field 3-D volumetric strain from the standard SD-OCT scans.
抽象的 此 K99/R00 应用程序支持计算数学和计算机方面的额外研究培训 愿景将使申请人 Madhusudhanan Balasubramanian 博士成为一名独立的 计算眼科多学科研究者。具体来说,在本次的K99训练阶段 Balasubramanian 博士将在加州大学圣地亚哥分校接受 Linda Zangwill 博士的指导,她是一名 眼科成立青光眼临床研究员,以及合作团队 导师,包括数学系的 Michael Holst 博士和该中心的联合主任 计算数学,计算科学、数学与工程和计算科学系联席主任 计算机科学与工程学院的 David Kriegman 博士。培训将通过正式的方式进行 课程作业、实验室实践培训、指导研究、咨询委员会的进度审查、访问 合作研究人员并定期参加研讨会和讲习班。后续R00 独立研究阶段涉及应用 Balasubramanian 博士新获得的计算能力 从光学器件的光学图像中识别青光眼随时间变化的艰巨任务的技术 神经头和视网膜神经纤维层。 有记录的进行性视神经病变的存在是目前可用于治疗的最佳金标准 青光眼诊断。共焦扫描激光检眼镜 (CSLO) 和谱域光学 相干断层扫描 (SD-OCT) 是两种可用于监测光学器件的光学成像仪器 青光眼诊断和治疗中的神经头健康。目前,一些统计和计算 现有技术可用于通过 CSLO 检查检测局部青光眼变化。 SD-OCT 是一种 基于光学干涉测量原理的新一代眼科成像仪。相比之下 CSLO技术,SDOCT可以通过内界膜(ILM)解析视网膜层 布鲁赫膜可以以非常高的分辨率捕获视神经乳头的 3D 结构。 这些高分辨率、高维体积扫描将数据复杂性提升到了一个新的水平,这是以前从未见过的。 青光眼进展分析之前,因此,强大的(高性能)计算技术 需要充分利用高精度视网膜测量来诊断青光眼。中心焦点 该应用程序在 K99 指导阶段的工作将是 1) 开发计算和 用于从 SDOCT 检测视网膜各层结构性青光眼变化的统计技术 扫描,以及 2) 开发青光眼治疗的新研究途径,其中视网膜层处于应变状态 将进行非侵入性评估以表征青光眼进展。在R00独立阶段, 具体目标侧重于开发 1) 用于检测体积的统计和计算技术 使用 3-D SD-OCT 体积扫描和 2) 计算框架来分析青光眼随时间的变化 从标准 SD-OCT 扫描中估计全视场 3-D 体积应变。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Madhusudhanan Balasubramanian其他文献

Madhusudhanan Balasubramanian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Madhusudhanan Balasubramanian', 18)}}的其他基金

New Techniques for Measuring Volumetric Structural Changes in Glaucoma
测量青光眼体积结构变化的新技术
  • 批准号:
    8989994
  • 财政年份:
    2014
  • 资助金额:
    $ 24.9万
  • 项目类别:
New Techniques for Measuring Volumetric Structural Changes in Glaucoma
测量青光眼体积结构变化的新技术
  • 批准号:
    8798661
  • 财政年份:
    2014
  • 资助金额:
    $ 24.9万
  • 项目类别:
New Techniques for Measuring Volumetric Structural Changes in Glaucoma
测量青光眼体积结构变化的新技术
  • 批准号:
    8209138
  • 财政年份:
    2011
  • 资助金额:
    $ 24.9万
  • 项目类别:
New Techniques for Measuring Volumetric Structural Changes in Glaucoma
测量青光眼体积结构变化的新技术
  • 批准号:
    7871151
  • 财政年份:
    2011
  • 资助金额:
    $ 24.9万
  • 项目类别:

相似国自然基金

本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Tachycardia-induced Metabolic Remodeling Drives Cardiac Dysfunction
心动过速引起的代谢重塑导致心脏功能障碍
  • 批准号:
    10738875
  • 财政年份:
    2023
  • 资助金额:
    $ 24.9万
  • 项目类别:
Dissecting enhancer-promoter looping and gene induction dynamics in differentiation
剖析分化过程中的增强子-启动子循环和基因诱导动态
  • 批准号:
    10642028
  • 财政年份:
    2023
  • 资助金额:
    $ 24.9万
  • 项目类别:
Using natural killer cells to prevent breast cancer metastases
使用自然杀伤细胞预防乳腺癌转移
  • 批准号:
    10591362
  • 财政年份:
    2023
  • 资助金额:
    $ 24.9万
  • 项目类别:
Engineering Immuno-Glial-Neurovascular 3D-Brain-Chips with a Perfusable BBB for Accelerating Alzheimer’s Disease Drug Discovery and Translation
工程免疫胶质神经血管 3D 脑芯片与可灌注 BBB 加速阿尔茨海默病药物发现和转化
  • 批准号:
    10741377
  • 财政年份:
    2023
  • 资助金额:
    $ 24.9万
  • 项目类别:
Elucidating anti-angiogenic tyrosine kinase inhibitor-induced vascular dysfunction
阐明抗血管生成酪氨酸激酶抑制剂诱导的血管功能障碍
  • 批准号:
    10570393
  • 财政年份:
    2023
  • 资助金额:
    $ 24.9万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了