Engineering Immuno-Glial-Neurovascular 3D-Brain-Chips with a Perfusable BBB for Accelerating Alzheimer’s Disease Drug Discovery and Translation
工程免疫胶质神经血管 3D 脑芯片与可灌注 BBB 加速阿尔茨海默病药物发现和转化
基本信息
- 批准号:10741377
- 负责人:
- 金额:$ 16.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAccelerationAddressAdvisory CommitteesAlzheimer&aposs DiseaseAlzheimer&aposs disease modelAlzheimer&aposs disease pathologyAmyloidBackBiocompatible MaterialsBioinformaticsBiomimeticsBlood - brain barrier anatomyBlood TestsBrainBusinessesCause of DeathCell LineCellsClinical TrialsClustered Regularly Interspaced Short Palindromic RepeatsCoculture TechniquesConsultationsCustomDataDevelopmentEngineeringFeedbackGeneral PopulationGeneticGenotypeGoalsHumanImmuneIn VitroInflammationInflammatoryInterviewLipidsLongitudinal cohortMarketingMediatingMentorsMicrofluidic MicrochipsModelingNeurodegenerative DisordersNeurologic EffectNeuronsNutrientPathogenesisPathologicPathologyPatientsPermeabilityPharmacological TreatmentPhasePhenotypePhysiologicalPositioning AttributePostdoctoral FellowPropertyRaceReproducibilityResearch MethodologyResourcesRiskStratificationStreamStructureTechnologyTestingTherapeuticTissue ModelTrainingTranslatingTranslationsTransport ProcessValidationVisionWorkapolipoprotein E-3apolipoprotein E-4blood-brain barrier permeabilizationbrain cellbrain tissuecareercareer developmentcell typecohortconstrictioncostdrug developmentdrug discoverygenetic risk factorimprovedin vivoinduced pluripotent stem cellinsightinventionlipidomicsmimeticsneurovascularneurovascular unitnovelpatient populationpatient stratificationpredictive modelingprogramsresponsescreeningself assemblysextau-1technology platformtherapeutic developmenttherapeutically effectivetool
项目摘要
PROJECT SUMMARY. While Alzheimer’s Disease (AD) is the sixth leading cause of death, there is still no
pharmacologic treatment on the market that slows or stops neuronal damage in AD. Apolipoprotein-E4 (APOE4)
is the strongest genetic risk factor for sporadic AD and one that roughly a quarter of the general population
carries. Importantly, further precluding effective therapeutic development is the lack of human-based models that
can recapitulate AD pathology with all the brain-resident cell types in the immune-glial-neurovascular unit, cap-
turing critical cell non-autonomous effects, including in inflammatory and lipid dysregulation, and blood brain
barrier (BBB)-mediated transport of nutrients and therapeutics. To address these limitations, in an ambitious
moonshot project in the first phase of my postdoctoral work, I have engineered a novel brain-mimetic matrix
(NeuroMatrix) that supports the co-culture of all 7 brain cell types from patient-specific induced pluripotent stem
cells with mature phenotypes to form a multi-cellular integrated brain model (miBRAIN). This model recapitulates
APOE4-associated dysregulation and AD pathological hallmarks of neuronal hyperexcitability, amyloid accumu-
lation, phosphorylated tau burden, etc. Further, I have developed a novel constriction-minimizing microfluidic
device that enables perfusable vasculature within neurovascular units self-assembled in NeuroMatrix. I propose
here to: (Aim 1) leverage the miBRAIN platform to construct a diverse “in vitro patient cohort” across
APOE genotype with isogenic lines to probe APOE4-specific effects and conduct important validation of
the model as I aim to hone this platform technology for broad utility and (Aim 2) engineer 3D-miBRAIN-
Chips by combining my novel microfluidic devices with the miBRAIN and successively integrating each cell type
towards a fully perfusable BBB within miBRAIN culture and harness them to functionally assess BBB perme-
ability and selectivity across patient cell lines and APOE status. After consultation with the Program Officer
and given my long-term goals, I have decided to further focus on (Aim 3) investigating the best path forward
for deploying this technology for maximal utility, including development of a business plan and identification
of potential partners and focus applications. This work thus could result in important insights for AD mechanistic
understanding, of immediate relevance to other neurodegenerative diseases associated with APOE4 risk, while
developing a well-validated 3D-miBRAIN-Chip platform technology that is an integrated immune-glial-neurovas-
cular unit with patient-specific genetics and biomimetic phenotypes and functions that could be of great utility for
therapeutic development across CNS pathologies. Simultaneously, it provides vital training in research meth-
ods (platform development, bioinformatics, lipidomic and inflammation analyses, mentoring from expert Co-
Mentors and Scientific Advisory Committee) and career development (immersive entrepreneurial training,
niche-specific coursework, mentoring from expert Co-Mentors and Entrepreneurial Advisory Committee, pursuit
of ambitious independent vision) that will make a marked difference in launching my independent career.
项目摘要。虽然阿尔茨海默氏病 (AD) 是第六大死因,但目前仍没有发现这种疾病。
市场上可减缓或阻止 AD 神经元损伤的药物治疗。
是散发性 AD 的最强遗传风险因素,大约四分之一的人群患有此病
重要的是,缺乏基于人体的模型进一步阻碍了有效的治疗开发。
可以用免疫-胶质-神经血管单元中所有大脑驻留细胞类型来概括 AD 病理学,
图解关键细胞非自主效应,包括炎症和脂质失调以及血脑
屏障(BBB)介导的营养物和疗法的运输为了解决这些局限性,我们雄心勃勃。
在我博士后工作的第一阶段的登月项目中,我设计了一种新颖的拟脑矩阵
(NeuroMatrix) 支持来自患者特异性诱导多能干细胞的所有 7 种脑细胞类型的共培养
具有成熟表型的细胞形成多细胞集成大脑模型(miBRAIN)。
APOE4 相关失调和神经元过度兴奋、淀粉样蛋白积累的 AD 病理特征
此外,我还开发了一种新颖的收缩最小化微流体
我建议在 NeuroMatrix 中实现神经血管单元内可灌注脉管系统的装置。
目标:(目标 1)利用 miBRAIN 平台构建跨领域的多元化“体外患者队列”
APOE 基因型与等基因系可探测 APOE4 特异性效应并进行重要验证
该模型,因为我的目标是磨练该平台技术以实现广泛的实用性和(目标 2)工程师 3D-miBRAIN-
将我的新型微流体装置与 miBRAIN 相结合并成功集成每种细胞类型的芯片
miBRAIN 培养物中完全可灌注的 BBB,并利用它们对 BBB 渗透进行功能评估
与项目官员协商后,确定患者细胞系的能力和选择性以及 APOE 状态。
鉴于我的长期目标,我决定进一步关注(目标 3)调查最佳前进道路
用于部署该技术以实现最大效用,包括制定业务计划和识别
因此,这项工作可能会给 AD 机制带来重要的见解。
了解与 APOE4 风险相关的其他神经退行性疾病直接相关,同时
开发经过充分验证的 3D-miBRAIN-Chip 平台技术,该技术是一种集成的免疫-胶质-神经血管-
具有患者特异性遗传学和仿生表型和功能的细胞单元,对于
同时,它还提供了重要的研究方法培训。
ods(平台开发、生物信息学、脂质组学和炎症分析、专家联合指导
导师和科学咨询委员会)和职业发展(沉浸式创业培训,
针对特定领域的课程、专家共同导师和创业咨询委员会的指导、追求
雄心勃勃的独立愿景),这将对我的独立职业生涯产生显着影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alice Stanton其他文献
Alice Stanton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alice Stanton', 18)}}的其他基金
Engineering a Vascularized Brain-Chip for Probing and Evaluating Mechanisms of Alzheimer’s Disease
设计用于探测和评估阿尔茨海默病机制的血管化脑芯片
- 批准号:
10428479 - 财政年份:2021
- 资助金额:
$ 16.39万 - 项目类别:
相似国自然基金
基于增广拉格朗日函数的加速分裂算法及其应用研究
- 批准号:12371300
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
肠菌源性丁酸上调IL-22促进肠干细胞增殖加速放射性肠损伤修复的机制研究
- 批准号:82304065
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于肌红蛋白构象及其氧化还原体系探究tt-DDE加速生鲜牛肉肉色劣变的分子机制
- 批准号:32372384
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于联邦学习自动超参调整的数据流通赋能加速研究
- 批准号:62302265
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
M2 TAMs分泌的OGT通过促进糖酵解过程加速肝细胞癌恶性生物学行为的机制研究
- 批准号:82360529
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
SELENOF is a Novel Tumor Suppressor and a New Target to Overcome Racial Disparity in Breast Cancer.
SELENOF 是一种新型肿瘤抑制剂,也是克服乳腺癌种族差异的新靶点。
- 批准号:
10735662 - 财政年份:2023
- 资助金额:
$ 16.39万 - 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 16.39万 - 项目类别:
Loss of transcriptional homeostasis of genes lacking CpG islands during aging
衰老过程中缺乏 CpG 岛的基因转录稳态丧失
- 批准号:
10814562 - 财政年份:2023
- 资助金额:
$ 16.39万 - 项目类别:
Hybrid Model-Based and Data-Driven Frameworks for High-Resolution Tomographic Imaging
基于混合模型和数据驱动的高分辨率断层成像框架
- 批准号:
10714540 - 财政年份:2023
- 资助金额:
$ 16.39万 - 项目类别:
Defining molecular mechanisms by which stimulant evoked dopamine drives inflammation and neuronal dysfunction in neuroHIV
定义兴奋剂诱发多巴胺驱动神经艾滋病毒炎症和神经元功能障碍的分子机制
- 批准号:
10685160 - 财政年份:2023
- 资助金额:
$ 16.39万 - 项目类别: