Cytoskeletal effects on mitochondrial dynamics through the ER-bound formin INF2
细胞骨架通过内质网结合的 INF2 对线粒体动力学的影响
基本信息
- 批准号:8827186
- 负责人:
- 金额:$ 39.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-07-01 至 2016-02-29
- 项目状态:已结题
- 来源:
- 关键词:ActinsAffectAlzheimer&aposs DiseaseAreaAttentionAutomobile DrivingBindingCell physiologyCellsCharcot-Marie-Tooth DiseaseConfocal MicroscopyCytoskeletonDefectDiseaseDynaminElectron MicroscopyEndocytosisEndoplasmic ReticulumEukaryotaEventGenerationsGenomeGoalsGuanosine Triphosphate PhosphohydrolasesHealthHomeostasisHumanHuntington DiseaseImmunoprecipitationLeadLengthLifeLinkMammalsMediatingMembraneMicrofilamentsMicroscopyMitochondriaMitochondrial ProteinsModelingMolecularMorphogenesisMovementMutationNeurodegenerative DisordersOrganellesOxidative StressParkinson DiseasePeripheral Nervous System DiseasesPharmaceutical PreparationsPlayPreparationProcessProtein IsoformsProteinsProteomicsResearchResearch PersonnelResolutionRoleSiteSmall Interfering RNASuggestionTechniquesTestingWorkYeastsbaseconstrictiondepolymerizationdesignhuman diseasemutantnovelpolymerizationprotein protein interactionreceptorspatial relationship
项目摘要
DESCRIPTION (provided by applicant): In the last several years, appreciation of the importance of mitochondria to cell physiology has risen dramatically. Mitochondria are highly dynamic, undergoing frequent fission and fusion to maintain proper distribution as well as to reduce the effects of oxidative stresses and deleterious mutations in their genome. These attributes are conserved throughout eukaryotes, as demonstrated by evolutionary conservation of the machinery for mitochondrial fission and fusion. The fission machinery is currently thought to consist of a cytosolic dynamin-related GTPase (Drp1 in mammals, Dnm1 in yeast) and mitochondrial protein receptors. However, many aspects of the fission process are unclear. First, the identity of the mitochondrial Drp1 receptor is not clear in mammals, with several proteins (hFis1, Mff, MiD49/51, and GDAP1) being proposed. In addition, it is uncertain whether Drp1-mediated constriction is capable of full mitochondrial fission. Finally, mitochondrial fission
appears to be initiated by contact with endoplasmic reticulum (ER), which alone is able to affect a Drp1-independent constriction. We propose a novel mechanism to resolve this issue, with interactions between the ER-mediated actin polymerization driving a primary mitochondrial constriction, which is necessary for a secondary Drp1-based constriction. The ER-bound formin protein INF2 mediates actin polymerization. Our preliminary results provide evidence supporting this mechanism. Our aims utilize cutting-edge techniques (super resolution microscopy, proteomics) to elucidate the macromolecular interactions necessary for ER-mediated mitochondrial fission. Aim 1 uses live-cell confocal and super resolution PALM to track INF2, actin, and Drp1 dynamics during fission at an unprecedented level. Aim 2 uses electron microscopy and super resolution STORM to examine structural features of the fission process and the spatial relationships between the protein components with at least 20 nm resolution. Aim 3 uses proteomics to identify the "INF2 receptor" on mitochondria, which we postulate is one of the currently hypothesized Drp1 receptors. Proteins identified in Aim 3 will be incorporated into Aims 1 and 2. While we test our mechanistic model, we remain open to many other mechanistic possibilities and our aims are designed to distinguish between these possibilities.
描述(由申请人提供):在过去的几年中,人们对线粒体对细胞生理学重要性的认识急剧提高。线粒体是高度动态的,经历频繁的裂变和融合,以维持适当的分布,并减少氧化应激和基因组中有害突变的影响。这些属性在真核生物中是保守的,正如线粒体裂变和融合机制的进化保守所证明的那样。目前认为裂变机制由胞质动力相关的 GTP 酶(哺乳动物中的 Drp1,酵母中的 Dnm1)和线粒体蛋白受体组成。然而,裂变过程的许多方面尚不清楚。首先,哺乳动物中线粒体 Drp1 受体的身份尚不清楚,有人提出了几种蛋白质(hFis1、Mff、MiD49/51 和 GDAP1)。此外,尚不确定 Drp1 介导的收缩是否能够实现线粒体的完全裂变。最后,线粒体裂变
似乎是通过与内质网 (ER) 接触而启动的,仅内质网就能够影响不依赖于 Drp1 的收缩。我们提出了一种新的机制来解决这个问题,即内质网介导的肌动蛋白聚合之间的相互作用驱动初级线粒体收缩,这对于基于 Drp1 的次级收缩是必要的。内质网结合的福尔明蛋白 INF2 介导肌动蛋白聚合。我们的初步结果提供了支持这一机制的证据。我们的目标是利用尖端技术(超分辨率显微镜、蛋白质组学)来阐明内质网介导的线粒体裂变所需的大分子相互作用。 Aim 1 使用活细胞共聚焦和超分辨率 PALM 以前所未有的水平跟踪裂变过程中的 INF2、肌动蛋白和 Drp1 动态。目标 2 使用电子显微镜和超分辨率 STORM 以至少 20 nm 的分辨率检查裂变过程的结构特征以及蛋白质成分之间的空间关系。目标 3 使用蛋白质组学来识别线粒体上的“INF2 受体”,我们假设它是目前假设的 Drp1 受体之一。目标 3 中鉴定的蛋白质将被纳入目标 1 和 2。在我们测试我们的机械模型时,我们对许多其他机械可能性持开放态度,我们的目标旨在区分这些可能性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas A Blanpied其他文献
Quantification of Trans-synaptic Protein Alignment: A Data Analysis Case for Single-molecule Localization Microscopy
跨突触蛋白质排列的量化:单分子定位显微镜的数据分析案例
- DOI:
10.1016/j.ymeth.2019.07.016 - 发表时间:
2020 - 期刊:
- 影响因子:4.8
- 作者:
Jia-Hui Chen;Thomas A Blanpied;Ai-Hui Tang - 通讯作者:
Ai-Hui Tang
Thomas A Blanpied的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas A Blanpied', 18)}}的其他基金
A Lightsheet Microscope for an Established Core Facility
适用于已建立的核心设施的光片显微镜
- 批准号:
10172216 - 财政年份:2021
- 资助金额:
$ 39.75万 - 项目类别:
Imaging triheteromeric NMDAR distribution and trafficking
三异体 NMDAR 分布和贩运成像
- 批准号:
10434923 - 财政年份:2021
- 资助金额:
$ 39.75万 - 项目类别:
Imaging triheteromeric NMDAR distribution and trafficking
三异体 NMDAR 分布和贩运成像
- 批准号:
10313352 - 财政年份:2021
- 资助金额:
$ 39.75万 - 项目类别:
CRCNS: Transmitter Release Site Organization in Plasticity and Disease at the NMJ
CRCNS:NMJ 可塑性和疾病领域的发射机释放站点组织
- 批准号:
9222595 - 财政年份:2016
- 资助金额:
$ 39.75万 - 项目类别:
Multiparametric Biosensor Imaging in Brain Slices
脑切片多参数生物传感器成像
- 批准号:
9449901 - 财政年份:2016
- 资助金额:
$ 39.75万 - 项目类别:
Multiparametric Biosensor Imaging in Brain Slices
脑切片多参数生物传感器成像
- 批准号:
9214054 - 财政年份:2016
- 资助金额:
$ 39.75万 - 项目类别:
CRCNS: Transmitter Release Site Organization in Plasticity and Disease at the NMJ
CRCNS:NMJ 可塑性和疾病领域的发射机释放站点组织
- 批准号:
8837233 - 财政年份:2014
- 资助金额:
$ 39.75万 - 项目类别:
CRCNS: Transmitter Release Site Organization in Plasticity and Disease at the NMJ
CRCNS:NMJ 可塑性和疾病领域的发射机释放站点组织
- 批准号:
8902284 - 财政年份:2014
- 资助金额:
$ 39.75万 - 项目类别:
Cytoskeletal effects on mitochondrial dynamics through the ER-bound formin INF2
细胞骨架通过内质网结合的 INF2 对线粒体动力学的影响
- 批准号:
9016561 - 财政年份:2013
- 资助金额:
$ 39.75万 - 项目类别:
Cytoskeletal effects on mitochondrial dynamics through the ER-bound formin INF2
细胞骨架通过内质网结合的 INF2 对线粒体动力学的影响
- 批准号:
8488671 - 财政年份:2013
- 资助金额:
$ 39.75万 - 项目类别:
相似国自然基金
小胶质细胞特异罕见易感突变介导相分离影响阿尔茨海默病发病风险的机制
- 批准号:82371438
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
OATPs介导Aβ/p-Tau转运对阿尔茨海默病病理机制形成及治疗影响的研究
- 批准号:82360734
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于个体水平的空气环境暴露组学探讨影响阿尔茨海默病的风险因素
- 批准号:82304102
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
超细颗粒物暴露对阿尔茨海默病的影响及其机制研究
- 批准号:82373532
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于神经退行性疾病前瞻性队列的新烟碱类杀虫剂暴露对阿尔茨海默病的影响及作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
Role of microglial lysosomes in amyloid-A-beta degradation
小胶质细胞溶酶体在淀粉样蛋白-A-β降解中的作用
- 批准号:
10734289 - 财政年份:2023
- 资助金额:
$ 39.75万 - 项目类别:
Regulation of synapse development by small GTPase cascades in Caenorhabditis elegans
秀丽隐杆线虫中小 GTP 酶级联对突触发育的调节
- 批准号:
10735077 - 财政年份:2023
- 资助金额:
$ 39.75万 - 项目类别:
Pericyte control of capillary perfusion in the Alzheimer's disease brain
阿尔茨海默病大脑中毛细血管灌注的周细胞控制
- 批准号:
10655813 - 财政年份:2023
- 资助金额:
$ 39.75万 - 项目类别:
Dissecting the Molecular Link Between Stroke, Actin, and Alzheimer's Disease
剖析中风、肌动蛋白和阿尔茨海默病之间的分子联系
- 批准号:
10772704 - 财政年份:2023
- 资助金额:
$ 39.75万 - 项目类别:
Determining the ultrastructural differences between dually and singly innervated dendritic spines and their changes following glutamate excitotoxicity using Cryo-Electron Tomography
使用冷冻电子断层扫描确定双重和单神经支配的树突棘之间的超微结构差异及其在谷氨酸兴奋性毒性后的变化
- 批准号:
10679214 - 财政年份:2023
- 资助金额:
$ 39.75万 - 项目类别: