Multiparametric Biosensor Imaging in Brain Slices
脑切片多参数生物传感器成像
基本信息
- 批准号:9449901
- 负责人:
- 金额:$ 7.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-15 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:AMPA ReceptorsActinsAction PotentialsAcuteAddressBRAIN initiativeBiochemical ProcessBiosensorBrainBrain DiseasesCalciumCellsCircadian RhythmsCodeCollaborationsColorComplexCyclic AMPCyclic AMP-Dependent Protein KinasesCytoskeletonDataData CollectionDendritic SpinesDetectionDevelopmentDimensionsDiseaseEventExhibitsFluorescence AnisotropyFluorescence PolarizationFluorescence Resonance Energy TransferFoundationsGene ExpressionGoalsHippocampus (Brain)HourImageIn SituIndividualKnowledgeLaboratoriesLightLightingLinkLocationLong-Term PotentiationMAP Kinase GeneMYLK geneMeasurementMeasuresMediatingMembraneMethodologyMethodsMicroscopeMicroscopyMolecularMonitorMonomeric GTP-Binding ProteinsMusNeuronsNoiseOpticsOrganismOutputPathway interactionsPeptide Signal SequencesPeriodicityPhasePhosphotransferasesPhototoxicityPhysiologicalPreparationPropertyReporterResearchResolutionSignal PathwaySignal TransductionSignaling MoleculeSliceSpecimenStimulusSurfaceSynapsesSynaptic plasticityTechnologyTimeValidationWorkcalmodulin-dependent protein kinase IIcircadian pacemakerelectrical propertyexperienceexperimental studyimage reconstructionimaging approachinsightinstrumentmicroscopic imagingmolecular dynamicsneuronal circuitryneuroregulationnoveloptical imagingpolymerizationquantitative imagingreceptorrelating to nervous systemresponserhosensorsuprachiasmatic nucleussynaptic functionsynaptogenesistemporal measurementtooltraffickingvoltageworking group
项目摘要
Deciphering neural coding will require deconstructing the complex and intertwined signaling mechanisms that
drive cellular excitability, synaptic plasticity, and circuit dynamics in the brain. This fundamental objective has
been extremely challenging because unraveling the temporal and spatial interactions of multiple signaling
pathways requires coordinated observation of multiple networks within individual cells and multiple neurons
within intact circuits. Large gaps in knowledge remain because our current tools for tracking the dynamics of
molecular activity are poorly suited for investigating more than one reporter at a time. Here, we propose to
tackle this constraint through development of a novel methodology for simultaneous optical imaging of multiple
quantitative FRET biosensors within single neurons, using FLuorescence Anisotropy Reporters (FLAREs).
Numerous FLAREs targeting canonical signaling pathways, including calcium, cAMP, and the MAPK cascade,
have been constructed in several colors allowing simultaneous imaging of up to three sensors in a single
preparation, either in the same or complimentary pathways. We propose three aims to validate and further
develop this technology to tailor it for studying cells and circuitry in acute and cultured slices from the mouse
brain during neural coding. We will first adapt an optical sectioning microscopy method that is highly
advantageous for fluorescence polarization imaging, known as dual-inverted Selective Plane Illumination
Microscopy (diSPIM), for FLARE imaging. We will also expand the FLARE palette to include key regulators of
synaptic function (Rac, CaMKII) and membrane excitability (voltage). Construction of the FLARE-SPIM
instrument will enable proof of principle studies on two high-value neuronal circuits. First, pushing the limits of
subcellular spatial resolution, FLARE-SPIM imaging will be performed on key signaling molecules in single
dendritic spines in acute hippocampal brain slices during induction of long-term potentiation. Second, pushing
the limits of cellular temporal resolution, we will track the rhythmic fluctuations of voltage, calcium, PKA and
ERK activities during circadian oscillations of neuronal activity exhibited in organotypically-cultured
suprachiasmatic nucleus brain slices. Together, these studies will lay the foundation for systematic exploration
of neuromodulation within cells and neuronal circuitry, providing critical and unprecedented new insights for the
spatial and temporal interactions between signaling pathways. Through collaboration with other Brain Initiative
groups working on similar problems, this foundational work will be scalable to add suites of sensors that
visualize nodes of coordinated cellular activity and reveal and measure the complexity of neural coding within
intact brain circuits.
破译神经编码需要解构复杂且相互交织的信号机制
驱动大脑中的细胞兴奋性、突触可塑性和回路动力学。这一基本目标已
非常具有挑战性,因为解开多种信号传导的时间和空间相互作用
通路需要对单个细胞和多个神经元内的多个网络进行协调观察
在完整的电路内。由于我们目前用于跟踪动态的工具,知识方面仍然存在巨大差距
分子活性不太适合一次调查多个报告者。在此,我们建议
通过开发一种同时光学成像的新方法来解决这一限制
使用荧光各向异性报告器(FLARE)在单个神经元内进行定量 FRET 生物传感器。
许多 FLARE 针对经典信号通路,包括钙、cAMP 和 MAPK 级联,
具有多种颜色,允许在单个传感器中同时成像最多三个传感器
以相同或互补的途径进行准备。我们提出三个目标来验证和进一步
开发这项技术,使其适合研究小鼠急性切片和培养切片中的细胞和电路
神经编码期间的大脑。我们将首先采用光学切片显微镜方法,该方法高度
有利于荧光偏振成像,称为双倒置选择性平面照明
显微镜 (diSPIM),用于耀斑成像。我们还将扩展 FLARE 调色板,以包括以下关键监管机构
突触功能(Rac、CaMKII)和膜兴奋性(电压)。 FLARE-SPIM 的构建
该仪器将能够对两个高价值神经元电路进行原理验证研究。首先,突破极限
FLARE-SPIM 成像将在单次成像中对关键信号分子进行亚细胞空间分辨率
长期增强诱导期间急性海马脑切片中的树突棘。二、推
为了突破细胞时间分辨率的限制,我们将跟踪电压、钙、PKA 和
器官典型培养中神经元活动昼夜节律振荡期间的 ERK 活性
视交叉上核脑切片。这些研究将为系统探索奠定基础
细胞和神经元回路内的神经调节,为
信号通路之间的空间和时间相互作用。通过与其他大脑计划的合作
致力于解决类似问题的小组,这项基础工作将可扩展以添加传感器套件,
可视化协调细胞活动的节点并揭示和测量内部神经编码的复杂性
完整的大脑回路。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas A Blanpied其他文献
Quantification of Trans-synaptic Protein Alignment: A Data Analysis Case for Single-molecule Localization Microscopy
跨突触蛋白质排列的量化:单分子定位显微镜的数据分析案例
- DOI:
10.1016/j.ymeth.2019.07.016 - 发表时间:
2020 - 期刊:
- 影响因子:4.8
- 作者:
Jia-Hui Chen;Thomas A Blanpied;Ai-Hui Tang - 通讯作者:
Ai-Hui Tang
Thomas A Blanpied的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas A Blanpied', 18)}}的其他基金
A Lightsheet Microscope for an Established Core Facility
适用于已建立的核心设施的光片显微镜
- 批准号:
10172216 - 财政年份:2021
- 资助金额:
$ 7.52万 - 项目类别:
Imaging triheteromeric NMDAR distribution and trafficking
三异体 NMDAR 分布和贩运成像
- 批准号:
10434923 - 财政年份:2021
- 资助金额:
$ 7.52万 - 项目类别:
Imaging triheteromeric NMDAR distribution and trafficking
三异体 NMDAR 分布和贩运成像
- 批准号:
10313352 - 财政年份:2021
- 资助金额:
$ 7.52万 - 项目类别:
CRCNS: Transmitter Release Site Organization in Plasticity and Disease at the NMJ
CRCNS:NMJ 可塑性和疾病领域的发射机释放站点组织
- 批准号:
9222595 - 财政年份:2016
- 资助金额:
$ 7.52万 - 项目类别:
Multiparametric Biosensor Imaging in Brain Slices
脑切片多参数生物传感器成像
- 批准号:
9214054 - 财政年份:2016
- 资助金额:
$ 7.52万 - 项目类别:
CRCNS: Transmitter Release Site Organization in Plasticity and Disease at the NMJ
CRCNS:NMJ 可塑性和疾病领域的发射机释放站点组织
- 批准号:
8837233 - 财政年份:2014
- 资助金额:
$ 7.52万 - 项目类别:
CRCNS: Transmitter Release Site Organization in Plasticity and Disease at the NMJ
CRCNS:NMJ 可塑性和疾病领域的发射机释放站点组织
- 批准号:
8902284 - 财政年份:2014
- 资助金额:
$ 7.52万 - 项目类别:
Cytoskeletal effects on mitochondrial dynamics through the ER-bound formin INF2
细胞骨架通过内质网结合的 INF2 对线粒体动力学的影响
- 批准号:
9016561 - 财政年份:2013
- 资助金额:
$ 7.52万 - 项目类别:
Cytoskeletal effects on mitochondrial dynamics through the ER-bound formin INF2
细胞骨架通过内质网结合的 INF2 对线粒体动力学的影响
- 批准号:
8488671 - 财政年份:2013
- 资助金额:
$ 7.52万 - 项目类别:
Cytoskeletal effects on mitochondrial dynamics through the ER-bound formin INF2
细胞骨架通过内质网结合的 INF2 对线粒体动力学的影响
- 批准号:
8827186 - 财政年份:2013
- 资助金额:
$ 7.52万 - 项目类别:
相似国自然基金
WDR1介导的肌动蛋白解聚动态平衡在小脑浦肯野细胞衰老性焦亡中的作用研究
- 批准号:32371053
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
肌动蛋白结合蛋白ANLN在胆汁淤积性肝损伤后肝再生过程中的作用及机制研究
- 批准号:82370648
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
肌动蛋白成核促进因子SHRC的结构和分子机制的研究
- 批准号:32301034
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肌动蛋白结合蛋白Xirp2介导基质刚度诱导心肌细胞肥大的力学生物学机制
- 批准号:12372314
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
染色质重塑因子肌动蛋白样6A在视网膜变性中的作用机制及干预研究
- 批准号:82371081
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Multiparametric Biosensor Imaging in Brain Slices
脑切片多参数生物传感器成像
- 批准号:
9214054 - 财政年份:2016
- 资助金额:
$ 7.52万 - 项目类别:
Genetic Control of Synaptic Structure in the Adult Brain.
成人大脑突触结构的遗传控制。
- 批准号:
7278616 - 财政年份:2005
- 资助金额:
$ 7.52万 - 项目类别: