INTEGRATED MICRO-OPTICS MICROFABRICATION
集成微光学微加工
基本信息
- 批准号:8169411
- 负责人:
- 金额:$ 1.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-04-01 至 2011-03-31
- 项目状态:已结题
- 来源:
- 关键词:AcousticsBiotechnologyCellsCollaborationsCollectionComputer Retrieval of Information on Scientific Projects DatabaseComputersCoupledCouplingCytometryDetectionDevelopmentDevicesElementsEngineeringFiberFiber OpticsFoundationsFundingGoalsGrantIndustryInstitutionLaboratoriesLasersLens FiberLightMedicalMicrofabricationMiniaturizationNew MexicoOpticsPhaseResearchResearch PersonnelResourcesSolidSourceStagingSystemTechniquesTechnologyTestingUnited States National Institutes of HealthUniversitiesWorkbasecostdetectorexperienceimprovedinstrumentinstrumentationlensminiaturizeparticleprofessor
项目摘要
This subproject is one of many research subprojects utilizing the
resources provided by a Center grant funded by NIH/NCRR. The subproject and
investigator (PI) may have received primary funding from another NIH source,
and thus could be represented in other CRISP entries. The institution listed is
for the Center, which is not necessarily the institution for the investigator.
The goal of the New Mexico Technology Research Collaborative (TRC; http://www.nm-trc.org/) is to create a focused Industry, University and National Laboratory partnership for medical instrumentation and applications development that will lay the foundation for a biotechnology industry in this sector in New Mexico. The proposed technical work combines truly unique capabilities in the TRC research institutions, advanced micro-optical capabilities at the University of New Mexico (UNM) and the unique acoustic focusing technology at Los Alamos National Laboratories (LANL), to create a miniature, shockproof optical system for a low cost portable flow cytometer. Dr. Kevin Malloy is Associate Director of the Center for High Technology Materials and Associate Professor in the Electrical and Computer Engineering Department at UNM. In the TRC project, LANL and UNM will work with Acoustic Cytometry Systems (ACS), a local startup company who has recently been selected by the Laboratory to commercialize LANL acoustic focusing technology that enables the development of an ultrasensitive low cost portable flow cytometer. The initial focus of the collaboration will be on development of a low cost, miniature, shockproof optical system for a new portable and ultrasensitive flow cytometer that ACS is developing and will commercialize. This will require the development of micro-fabricated optical elements for coupling laser excitation and emission to a flow cell, as well as coupling to miniature optical detection components. In the course of this collaboration, several micro-optical fabrication technologies and devices will be developed and tested that have immediate application to the instrumentation development efforts in Projects 1 of the NFCR renewal application. We also anticipate application of these techniques and the UNM micro-optical fabrication expertise in the later stages of Projects 1 and 3.
In the past, the larger size of optical devices made it easy to align lenses with sufficient accuracy. Recent miniaturization has driven the development of new optical elements capable of efficiently coupling combinations of optical components. These new micro-optical technologies also provide the opportunity to integrate the flow channel and optical paths on a solid substrate, which will create a compact and robust system. In this collaboration, we will investigate the best use of microfabrication and specialized fiber optics to rigidly align optical paths with the flow cell in a flow cytometer. The three components necessary for a miniature optical flow cell are described below, with specific reference to their integration in a compact, low cost instrument. Similar fabrication techniques and devices will be utilized for the multiple flow cells necessary for the high-throughput large particle sorter to be developed in Project 2. We also anticipate that application of these techniques in the development of specialized field-based manipulation cytometers to be developed in collaborations for Project 1. Finally, the experience and devices developed in this collaboration will be extremely useful in the later stages of Project 3, particularly for improving light collection and coupling to the advanced optical elements proposed in the final two aims of the integrated phase-spectral instrument. There will be three inter-related components in our approach to developing miniaturized flow cells optically coupled to low-power lasers and small optical detectors: 1) micro-optic fiber lenses; 2) micro-optic emission collection; and 3) fiber coupled excitation and detection optics.
该子项目是利用该技术的众多研究子项目之一
资源由 NIH/NCRR 资助的中心拨款提供。子项目及
研究者 (PI) 可能已从 NIH 的另一个来源获得主要资金,
因此可以在其他 CRISP 条目中表示。列出的机构是
中心,不一定是研究者的机构。
新墨西哥州技术研究合作组织(TRC;http://www.nm-trc.org/)的目标是为医疗仪器和应用开发建立一个专注于工业、大学和国家实验室的合作伙伴关系,这将为医疗仪器和应用程序开发奠定基础。新墨西哥州该领域的生物技术产业。 拟议的技术工作结合了 TRC 研究机构真正独特的能力、新墨西哥大学 (UNM) 先进的微光学能力以及洛斯阿拉莫斯国家实验室 (LANL) 独特的声学聚焦技术,以创建微型、防震光学用于低成本便携式流式细胞仪的系统。 Kevin Malloy 博士是新墨西哥大学高技术材料中心副主任兼电气与计算机工程系副教授。 在 TRC 项目中,LANL 和 UNM 将与 Acoustic Cytometry Systems (ACS) 合作,该公司是一家当地初创公司,最近被实验室选中将 LANL 声学聚焦技术商业化,从而开发出超灵敏低成本便携式流式细胞仪。 合作的最初重点将是为 ACS 正在开发并将商业化的新型便携式超灵敏流式细胞仪开发低成本、微型、防震光学系统。 这将需要开发微型光学元件,用于将激光激发和发射耦合到流动池,以及耦合到微型光学检测组件。 在此次合作过程中,将开发和测试多种微光学制造技术和设备,这些技术和设备将立即应用于 NFCR 更新应用项目 1 中的仪器开发工作。 我们还预计在项目 1 和 3 的后期阶段应用这些技术和 UNM 微光学制造专业知识。
过去,光学设备尺寸较大,可以轻松以足够的精度对准镜头。 最近的小型化推动了能够有效耦合光学元件组合的新型光学元件的开发。 这些新的微光学技术还提供了将流道和光路集成在固体基底上的机会,这将创建一个紧凑而坚固的系统。 在这次合作中,我们将研究微加工和专用光纤的最佳用途,以将光路与流式细胞仪中的流动池严格对齐。 下面描述了微型光学流通池所需的三个组件,特别是它们在紧凑、低成本仪器中的集成。 类似的制造技术和设备将用于项目 2 中开发的高通量大颗粒分选机所需的多个流动池。我们还预计这些技术在开发专门的基于现场的操作细胞仪的开发中的应用项目 1 的合作。最后,本次合作中开发的经验和设备将在项目 3 的后期阶段非常有用,特别是对于改进光收集和与集成阶段的最后两个目标中提出的先进光学元件的耦合-光谱仪器。 我们开发与低功率激光器和小型光学探测器光学耦合的小型流动池的方法将包含三个相互关联的组成部分:1)微光纤透镜; 2)微光发射采集; 3) 光纤耦合激发和检测光学器件。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KEVIN J MALLOY其他文献
KEVIN J MALLOY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KEVIN J MALLOY', 18)}}的其他基金
相似国自然基金
定制工程细胞合成生物技术及多样性应用研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
鱼类生殖细胞发育与生物技术
- 批准号:
- 批准年份:2020
- 资助金额:400 万元
- 项目类别:国家杰出青年科学基金
用于单细胞水平上检测干细胞内多种miRNA原位表达的多色纳米传感探针的研究
- 批准号:31771077
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于亲和多肽的新型荧光纳米传感器构建及其在肿瘤干细胞标志物检测中的应用
- 批准号:21505042
- 批准年份:2015
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
阴离子载体的合成及其在细胞成像分析与治疗中的应用
- 批准号:21575055
- 批准年份:2015
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Development of a high throughput platform for screening directed evolution libraries
开发用于筛选定向进化文库的高通量平台
- 批准号:
10574429 - 财政年份:2023
- 资助金额:
$ 1.67万 - 项目类别:
Super-resolved multiphoton microscopy with dual output ultrafast laser
具有双输出超快激光的超分辨率多光子显微镜
- 批准号:
10664267 - 财政年份:2023
- 资助金额:
$ 1.67万 - 项目类别:
Simultaneous analysis of cell-borne and soluble biomarkers by high throughput acoustic flow cytometry
通过高通量声学流式细胞术同时分析细胞源性和可溶性生物标志物
- 批准号:
10602869 - 财政年份:2023
- 资助金额:
$ 1.67万 - 项目类别:
Super-resolved multiphoton microscopy with dual output ultrafast laser
具有双输出超快激光的超分辨率多光子显微镜
- 批准号:
10664267 - 财政年份:2023
- 资助金额:
$ 1.67万 - 项目类别:
Acoustic platform for separation, isolation, and enrichment in biomedical research
用于生物医学研究中分离、隔离和富集的声学平台
- 批准号:
10445614 - 财政年份:2022
- 资助金额:
$ 1.67万 - 项目类别: