Super-resolved multiphoton microscopy with dual output ultrafast laser
具有双输出超快激光的超分辨率多光子显微镜
基本信息
- 批准号:10664267
- 负责人:
- 金额:$ 14.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-01 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAcousticsAfferent NeuronsAnesthesia proceduresAnimal ModelAxonBackBiomedical ResearchBiotechnologyCapsidCellsCentral Nervous SystemCognitionComplexComputer softwareCorneaDependovirusDevelopmentDimensionsDiseaseDrug DesignDyesElectron MicroscopyEmotionsEngineeringFiberGene DeliveryGoalsImageImage EnhancementImaging DeviceImaging TechniquesIn VitroKnowledge DiscoveryLabelLasersLifeLightLiquid substanceMentorsMicroscopeMicroscopyMusNervous SystemNeuronsNuclear TranslocationOpticsOrganismOutputPatternPenetrationPeripheral Nervous SystemPhysicsPhysiologic pulsePositioning AttributeProcessResolutionResourcesSchwann CellsSensorimotor functionsSensoryShapesSignal TransductionSourceSpecimenSpeedSpinal GangliaStretchingStructureTechniquesTherapeuticThickTimeTissuesVenusViralViral VectorVirionVisualizationWorkadeno-associated viral vectorbiomedical imagingcell typecellular transductioncostdesignexpectationimaging platformimprovedin vivoinsightintravital imaginglenslight microscopymulti-photonmultiphoton microscopynanoscalenervous system disordernervous system imagingnovelopen sourceparticlepermissivenessskillsspatiotemporalsuperresolution imagingtraffickingtwo-photonultra high resolutionuptakevectorvirology
项目摘要
Project Summary/ Abstract
Nervous system disease may yield devastating impact on cognition, emotion, or sensorimotor function. Gene
delivery using adeno-associated virus (AAV) vectors has demonstrated immense potential for treatment of
congenital and acquired diseases impacting the central and peripheral nervous systems. Advancing
mechanistic understanding of vector uptake and trafficking within nervous system cells would inform viral
vector capsid design. Heretofore, visualizing viral vector cellular transduction in vivo has been hampered by a
lack of optimal means for resolving nanoscale particles in thick tissues. Imaging viral particles whose
dimensions are below the ~250 nm diffraction limit resolution of light microscopy is typically achieved using
electron microscopy, a resource-intensive technique incompatible with life. There is a critical need to develop
intravital imaging techniques that enable high-speed and deep nanoscale imaging of living systems. Two-
photon excitation (2PE) microscopy is a powerful technique for intravital imaging of the nervous system that
employs ultrafast near-infrared laser light capable of penetrating deep into tissues. Though the technique
enables intravital imaging of thick tissues, the achievable resolution and image quality of 2PE microscopy is
inadequate for study of nanoscale processes. 2PE microscopy may be paired with stimulated emission
depletion (STED) techniques to enable resolution of nanoscale fluorescent-tagged targets. To enhance
imaging depth and signal-to-background, 2PE may be achieved via spatiotemporal overlap of two ultrafast
lasers of different wavelengths in a process termed non-degenerate 2PE. Heretofore, wide dissemination of
2PE-STED and non-degenerate 2PE microscopy techniques have been hampered by the cost and complexity
associated with synchronization and alignment of two ultrafast laser sources. Herein, we propose to develop
efficient super-resolved multiphoton microscopy approaches to enhance spatiotemporal resolution and imaging
depth within living tissues by employing a single dual-output commercial ultrafast laser. Once developed, we
will employ these novel imaging platforms to study intracellular trafficking of single AAV particles within cells of
the murine nervous system. In Aim 1, the dual-output ultrafast laser will be utilized to achieve 2PE-STED
microscopy via pulsed depletion and employed to image AAV trafficking in cultured Schwann cells and primary
sensory neurons of murine dorsal root ganglia. In Aim 2, the dual-output ultrafast laser will be utilized to
achieve non-degenerate 2PE and paired with a continuous wave depletion beam for deep super-resolution
imaging of AAV trafficking in corneal Schwann cells and sensory neurons in live anesthetized mice. A liquid
lens will be employed to enhance volumetric imaging speed. If successful, this work carries potential to
advance understanding of viral vector transduction of nervous system cells by identifying intracellular trafficking
bottlenecks, while illustrating the potential of super-resolution 2PE microscopy techniques to advance
knowledge discovery in biomedicine.
项目概要/摘要
神经系统疾病可能会对认知、情绪或感觉运动功能产生毁灭性影响。基因
使用腺相关病毒(AAV)载体进行递送已证明治疗以下疾病的巨大潜力
影响中枢和周围神经系统的先天性和后天性疾病。前进
对神经系统细胞内载体摄取和运输的机制的理解将为病毒提供信息
矢量衣壳设计。迄今为止,体内病毒载体细胞转导的可视化一直受到以下因素的阻碍:
缺乏解决厚组织中纳米级颗粒的最佳方法。对病毒颗粒进行成像
尺寸低于光学显微镜的〜250 nm衍射极限分辨率通常是使用
电子显微镜是一种与生命不相容的资源密集型技术。迫切需要开发
能够对生命系统进行高速、深度纳米级成像的活体成像技术。二-
光子激发 (2PE) 显微镜是一种用于神经系统活体成像的强大技术,
采用能够深入组织的超快近红外激光。虽然技术
能够对厚组织进行活体成像,2PE 显微镜可实现的分辨率和图像质量是
不足以研究纳米级过程。 2PE 显微镜可与受激发射配合使用
耗尽(STED)技术可实现纳米级荧光标记目标的分辨率。增强
成像深度和信号到背景,2PE 可以通过两个超快的时空重叠来实现
在称为非简并 2PE 的过程中使用不同波长的激光。迄今为止,广泛传播
2PE-STED 和非简并 2PE 显微镜技术因成本和复杂性而受到阻碍
与两个超快激光源的同步和对准相关。在此,我们建议开发
有效的超分辨率多光子显微镜方法可增强时空分辨率和成像
通过使用单个双输出商用超快激光器来测量活体组织内的深度。一旦开发出来,我们
将利用这些新颖的成像平台来研究单个 AAV 颗粒在细胞内的细胞内运输
小鼠神经系统。在目标1中,将利用双输出超快激光器来实现2PE-STED
通过脉冲耗尽显微镜,用于对培养的雪旺细胞和原代细胞中的 AAV 运输进行成像
小鼠背根神经节的感觉神经元。在目标 2 中,双输出超快激光器将用于
实现非简并 2PE 并与连续波耗尽光束配对以实现深度超分辨率
活体麻醉小鼠角膜雪旺细胞和感觉神经元中 AAV 运输的成像。液体
将采用透镜来提高体积成像速度。如果成功的话,这项工作有潜力
通过识别细胞内运输促进对神经系统细胞病毒载体转导的理解
瓶颈,同时说明超分辨率 2PE 显微镜技术的潜力
生物医学知识发现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ivan Coto Hernandez其他文献
Ivan Coto Hernandez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
鼓泡床密相区温度、颗粒浓度与气泡分布的二维同步声学双参数成像
- 批准号:62301355
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非厄米声学晶格系统中的拓扑物理研究
- 批准号:12374418
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
多孔声学超材料宏微观结构耦合强化吸声机制与多尺度结构设计技术
- 批准号:52375122
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
轨道模式依赖的声学拓扑态及其应用研究
- 批准号:12304492
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
声学拓扑安德森绝缘体拓扑特性研究
- 批准号:12304486
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Evaluation of a structure-function model for auditory consequences of impact acceleration brain injury and protection via the olivocochlear system
冲击加速脑损伤的听觉后果的结构功能模型评估以及通过橄榄耳蜗系统的保护
- 批准号:
10605573 - 财政年份:2022
- 资助金额:
$ 14.28万 - 项目类别:
Neural defects in zebrafish auditory/vestibular mutants
斑马鱼听觉/前庭突变体的神经缺陷
- 批准号:
10412441 - 财政年份:2021
- 资助金额:
$ 14.28万 - 项目类别:
Diversification of spiral ganglion neurons during development and in maturity
螺旋神经节神经元在发育和成熟过程中的多样化
- 批准号:
10320387 - 财政年份:2020
- 资助金额:
$ 14.28万 - 项目类别:
Morphological and Molecular Development of Efferent Innervation of the Cochlea
耳蜗传出神经支配的形态和分子发育
- 批准号:
10066467 - 财政年份:2020
- 资助金额:
$ 14.28万 - 项目类别:
Sleep fragmentation by brief awakenings as a surrogate to measure neuropathic spontaneous pain
通过短暂觉醒来进行睡眠碎片化作为测量神经性自发性疼痛的替代方法
- 批准号:
10609830 - 财政年份:2020
- 资助金额:
$ 14.28万 - 项目类别: