DEVELOPMENT OF DATA ONTOLOGIES FOR INTEGRATING MULTI-CENTER CARDIOVASCULAR STUDIE
开发整合多中心心血管研究的数据本体
基本信息
- 批准号:7851333
- 负责人:
- 金额:$ 47.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-01 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptedArchitectureBeliefBioinformaticsBiological AssayCardiovascular DiseasesCardiovascular systemClinicalCollaborationsCommon Data ElementCommunitiesComplexComputer softwareComputerized Medical RecordControlled VocabularyDataData AnalysesData SetDatabasesDevelopmentDimensionsDiseaseDyslipidemiasElementsEnsureEnvironmentEpidemiologic StudiesEpidemiologyEquipmentFailureFamily StudyFerretsGenesGeneticGenotypeGoalsHealth Care CostsHumanHypertensionIndividualLanguageLiteratureMalignant NeoplasmsMeasurementMeasuresMetadataMethodsModelingMorbidity - disease rateNational Cancer InstituteNatural Language ProcessingNatureOntologyPhenotypePhysiologicalProtocols documentationPublic HealthPublishingResearchResearch InfrastructureResearch PersonnelResourcesRisk FactorsSample SizeScientistSolutionsStrategic PlanningStructureSystemTechnologyTimeTime StudyVocabularyWorkanticancer researchbiomedical informaticscancer Biomedical Informatics Gridcardiovascular disorder riskdata integrationdata miningdata sharingdesignexperiencemortalitysoftware developmentsoftware systemstooltraituser-friendly
项目摘要
Cardiovascular disease (CVD) and its associated risk factors such as hypertension and dyslipidemia constitute a major public-health burden due to increased mortality and morbidity and rising health care costs. Massive epidemiological data are needed to detect the small effects of many individual genes and the environment on these traits. However, sample sizes needed to make powerful inferences may only be reached by integrating multiple epidemiological studies. Meaningful integration of information from multiple studies requires the development of data ontologies which make it possible to integrate information across studies in an optimum manner so as to maximize the information content and hence the statistical power for detecting small effect sizes. A second compounding problem of data integration is that software applications that manage such study data are typically non-interoperable, i.e. “silos” of data, and are incapable of being shared in a syntactically and semantically meaningful manner. Consequently, an infrastructure that integrates across studies in an interoperable manner is needed to ensure that epidemiological cardiovascular research remains a viable and major player in the biomedical informatics revolution which is currently underway. The cancer Biomedical Informatics Grid (caBIGTM) is addressing these problems in the cancer domain by developing software systems that are able to exchange information or that are syntactically interoperable by accessing metadata that is semantically annotated using controlled vocabularies. Our overarching goal is to develop ontologies for integrating cardiovascular epidemiological data from multiple studies. Specifically, we propose three Aims: First, develop cardiovascular data ontologies and vocabularies for each of three disparate multi-center epidemiological studies that facilitate data integration across the studies and data mining for various phenotypes. Second, adopt a technology infrastructure that leverages the cardiovascular data ontologies and vocabularies using Model Driven Architecture (MDA) and caBIGTM tools to facilitate the integration and widespread sharing of cardiovascular data sets. Third, facilitate seamless data sharing and promote widespread data dissemination among research communities cutting across clinical, translational and epidemiological domains, primarily through collaboration with the established CardioVascular Research Grid (CVRG).
由于死亡率和发病率的增加以及医疗费用的上升,心血管疾病(CVD)及其相关危险因素(如高血压和血脂异常)构成了重大的公共卫生负担,需要大量的流行病学数据来检测许多个体基因和疾病的微小影响。然而,只有通过整合多项流行病学研究才能达到做出有力推论所需的样本量。对来自多项研究的信息进行有意义的整合需要开发数据本体,从而能够整合各个研究中的信息。数据集成的第二个复杂问题是,管理此类研究数据的软件应用程序通常是不可互操作的,即数据“孤岛”。并且无法以句法和语义上有意义的方式进行共享,因此需要一个以可互操作的方式整合跨研究的基础设施,以确保流行病学心血管研究仍然是生物医学信息学革命中可行的主要参与者。目前正在进行的癌症生物医学信息网格(caBIGTM)正在通过开发能够交换信息或通过访问使用受控词汇进行语义注释的元数据来进行语法互操作的软件系统来解决癌症领域的这些问题。具体来说,我们提出了三个目标:首先,为每项研究开发心血管数据本体和词汇表。三项不同的多中心流行病学研究,促进跨研究的数据集成和各种表型的数据挖掘 其次,采用利用模型驱动架构 (MDA) 和 caBIGTM 工具的心血管数据本体和词汇表的技术基础设施,以促进集成和分析。第三,主要通过与现有的心血管研究机构合作,促进跨临床、转化和流行病学领域的研究团体之间的无缝数据共享并促进广泛的数据传播。网格(CVRG)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RAKESH NAGARAJAN其他文献
RAKESH NAGARAJAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RAKESH NAGARAJAN', 18)}}的其他基金
DEVELOPMENT OF DATA ONTOLOGIES FOR INTEGRATING MULTI-CENTER CARDIOVASCULAR STUDIE
开发整合多中心心血管研究的数据本体
- 批准号:
7558424 - 财政年份:2009
- 资助金额:
$ 47.49万 - 项目类别:
Washington University Center for Translational Neuroscience
华盛顿大学转化神经科学中心
- 批准号:
7321063 - 财政年份:2006
- 资助金额:
$ 47.49万 - 项目类别:
Integrated Bioinformatic Analysis of Genomic Datasets
基因组数据集的综合生物信息学分析
- 批准号:
7284994 - 财政年份:2005
- 资助金额:
$ 47.49万 - 项目类别:
Integrated Bioinformatic Analysis of Genomic Datasets
基因组数据集的综合生物信息学分析
- 批准号:
6973370 - 财政年份:2005
- 资助金额:
$ 47.49万 - 项目类别:
Integrated Bioinformatic Analysis of Genomic Datasets
基因组数据集的综合生物信息学分析
- 批准号:
7124709 - 财政年份:2005
- 资助金额:
$ 47.49万 - 项目类别:
Washington University Center for Translational Neuroscience
华盛顿大学转化神经科学中心
- 批准号:
7663812 - 财政年份:
- 资助金额:
$ 47.49万 - 项目类别:
Washington University Center for Translational Neuroscience
华盛顿大学转化神经科学中心
- 批准号:
8119533 - 财政年份:
- 资助金额:
$ 47.49万 - 项目类别:
Washington University Center for Translational Neuroscience
华盛顿大学转化神经科学中心
- 批准号:
7494540 - 财政年份:
- 资助金额:
$ 47.49万 - 项目类别:
相似国自然基金
适当冷暴露通过肠道菌群调控心脏免疫微环境改善心梗后心室重构和心力衰竭的作用与机制
- 批准号:82330014
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
SIRT1通过TXNIP/NLRP3通路促进巨噬细胞自噬在烟曲霉感染中的作用及机制研究
- 批准号:82360624
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
心外膜细胞中BRD4通过促进MEOX-1表达激活TGF-β信号通路参与糖尿病心肌病纤维化形成的分子机制研究
- 批准号:82300398
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
红毛藻多糖通过增加肠道鼠乳杆菌丰度双向调节免疫功能机制研究
- 批准号:32302098
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
腺相关病毒载体介导的circ_12952基因治疗通过激活结直肠癌抗肿瘤免疫增强PD-1抗体疗效的机制研究及临床探索
- 批准号:82303073
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Volumetric analysis of epithelial morphogenesis with high spatiotemporal resolution
高时空分辨率上皮形态发生的体积分析
- 批准号:
10586534 - 财政年份:2023
- 资助金额:
$ 47.49万 - 项目类别:
Developing a robust native extracellular matrix to improve islet function with attenuated immunogenicity for transplantation
开发强大的天然细胞外基质,以改善胰岛功能,并减弱移植的免疫原性
- 批准号:
10596047 - 财政年份:2023
- 资助金额:
$ 47.49万 - 项目类别:
Binding Kinetics in Transcription Activation and Repression
转录激活和抑制中的结合动力学
- 批准号:
10638937 - 财政年份:2023
- 资助金额:
$ 47.49万 - 项目类别:
Pharmacogenomics Workflow: Identifying Biomarkers and Treatment Options
药物基因组学工作流程:识别生物标志物和治疗方案
- 批准号:
10819933 - 财政年份:2023
- 资助金额:
$ 47.49万 - 项目类别:
Elucidating the distinct roles of T cell-polarized microglia in glioblastoma suppression and progression
阐明 T 细胞极化小胶质细胞在胶质母细胞瘤抑制和进展中的独特作用
- 批准号:
10752583 - 财政年份:2023
- 资助金额:
$ 47.49万 - 项目类别: