Deciphering Enzyme Specificity: Amidohydrolase Superfamily
破译酶的特异性:酰胺水解酶超家族
基本信息
- 批准号:7743893
- 负责人:
- 金额:$ 30.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-01 至 2014-06-30
- 项目状态:已结题
- 来源:
- 关键词:Active SitesAmidesAmidohydrolasesAmino Acid SequenceAmino AcidsBiochemicalBiological AssayC-terminalChemicalsCodeCollaborationsComplementDeaminationDecarboxylationDetectionDevelopmentDihydroorotaseDockingEnzymesEstersEvolutionFundingGenesGenomicsGoalsHomology ModelingHydration statusHydrolysisInstructionLaboratoriesLactonesLibrariesLigand BindingMetabolicMetabolic PathwayMetalsMethodologyMethodsModelingMolecularMononuclearNew YorkNucleic AcidsOperonOrganophosphatesPeptide Sequence DeterminationPhosphoric Triester HydrolasesPrincipal InvestigatorProteinsProtocols documentationReactionResearchResolutionRoentgen RaysScreening procedureSolventsSpecificityStructureSubstrate SpecificitySystemTherapeutic InterventionUreaseWateradenosine deaminasecombinatorialenzyme structureforgingfunctional groupinsightmembernovelprogramsprotein structuresmall moleculesmall molecule librariesstructural genomics
项目摘要
The long-term objective for the research described in this application is directed at a comprehensive
understanding of the physical and chemical parameters that relate protein structure and substrate
recognition in enzyme-catalyzed reactions. This objective is aimed toward the development of general
methodologies and novel protocols for the determination of reaction and substrate specificities for enzymes
of unknown function. A critical assessment of the functional annotations forthe more than four million genes
that have been sequenced to date suggests that approximately one-third of the encoded proteins have an
uncertain, unknown, or /ncorrecf functional assignment. This observation suggests that a significant fraction
of the metabolic diversity remains to be properly characterized. Toward this end we will utilize computational
docking of high energy intermediates to models of the active sites for enzymes of unknown function to
identify the most probable substrates. These efforts will be complemented by the synthesis and screening of
chemical libraries and the abstraction of further metabolic information from operon and genomic context.
This goal will be pursued by concentrating on the elucidation of the substrate and reaction profiles forthe
entire ensemble of enzymes within the amidohydrolase superfamily. The amidohydrolase superfamily is a
group of enzymes which has a substantial substrate diversity embedded within active sites that are forged
from a (p/a)8-barrel structural fold. Over 6,000 unique protein sequences have been identified as members of
the amidohydrolase superfamily. Members of this superfamily have been shown to catalyze the hydrolysis of
amides, lactones and organophosphate esters, in addition to decarboxylation, hydration, and isomerization
reactions. However, a substantial fraction of the members of this broad superfamily have an ambiguous
substrate and reaction specificity that remains to be unraveled. Members of this superfamily of enzymes
include dihydroorotase, urease, and adenosine deaminase. The hallmark for this particular superfamily of
enzymes is an active site at the C-terminal end of a (p/a)8-barrel structural domain that contains a
mononuclear or binuclear metal center that functions predominantly, but not exclusively, to activate solvent
water for nucleophilic attack on electrophilic functional groups. The substrate and reaction diversity
contained within this enzyme superfamily will provide unique insights into the molecular mechanisms for the
evolution and development of novel enzymatic activities from existing structural templates.
RELEVANCE (See instructions);
The overall objective of this application is directed towards the development of novel and general
methods for the elucidation of function for enzymes with unknown substrates. These efforts will unveil new
metabolic transformations and identify new targets for therapeutic intervention.
本申请中描述的研究的长期目标是针对全面的
了解与蛋白质结构和底物相关的物理和化学参数
酶催化反应中的识别。这一目标旨在促进一般性的发展
用于确定酶的反应和底物特异性的方法和新方案
未知功能。对超过四百万个基因的功能注释进行严格评估
迄今为止已测序的结果表明,大约三分之一的编码蛋白质具有
不确定、未知或 /ncorrecf 功能分配。这一观察结果表明,很大一部分
代谢多样性的特征仍有待适当表征。为此,我们将利用计算
将高能中间体与未知功能酶的活性位点模型对接
确定最可能的底物。这些努力将得到合成和筛选的补充
化学文库以及从操纵子和基因组背景中提取进一步的代谢信息。
这一目标将通过集中阐明底物和反应曲线来实现。
酰胺水解酶超家族中的整个酶系。酰胺水解酶超家族是
一组具有大量底物多样性的酶,嵌入在锻造的活性位点中
来自 (p/a)8 桶结构折叠。超过 6,000 个独特的蛋白质序列已被鉴定为
酰胺水解酶超家族。该超家族的成员已被证明能够催化水解
酰胺、内酯和有机磷酸酯,以及脱羧、水合和异构化
反应。然而,这个广泛的超家族的大部分成员都有一个模糊的概念
底物和反应特异性仍有待阐明。该酶超家族的成员
包括二氢乳清酶、脲酶和腺苷脱氨酶。这个特殊超家族的标志
酶是位于 (p/a)8 桶结构域 C 末端的活性位点,该结构域包含
单核或双核金属中心,主要但不限于活化溶剂
水对亲电官能团进行亲核攻击。底物和反应多样性
该酶超家族中所包含的内容将为了解该酶的分子机制提供独特的见解。
从现有结构模板进化和开发新的酶活性。
相关性(参见说明);
该应用程序的总体目标是开发新颖和通用的
阐明具有未知底物的酶的功能的方法。这些努力将揭开新面纱
代谢转变并确定治疗干预的新目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Frank M. Raushel其他文献
Frank M. Raushel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Frank M. Raushel', 18)}}的其他基金
The Discovery of Novel Metabolic Pathways for the Biosynthesis and Degradation of Complex Carbohydrates within the Human Gut Microbiome
人类肠道微生物组内复杂碳水化合物生物合成和降解的新代谢途径的发现
- 批准号:
10323657 - 财政年份:2021
- 资助金额:
$ 30.6万 - 项目类别:
The Discovery of Novel Metabolic Pathways for the Biosynthesis and Degradation of Complex Carbohydrates within the Human Gut Microbiome
人类肠道微生物组内复杂碳水化合物生物合成和降解的新代谢途径的发现
- 批准号:
10557076 - 财政年份:2021
- 资助金额:
$ 30.6万 - 项目类别:
The Discovery of Novel Metabolic Pathways for the Biosynthesis and Degradation of Complex Carbohydrates within the Human Gut Microbiome
人类肠道微生物组内复杂碳水化合物生物合成和降解的新代谢途径的发现
- 批准号:
10084621 - 财政年份:2021
- 资助金额:
$ 30.6万 - 项目类别:
Novel Biochemical Pathways for the Metabolism of Carbohydrates in the Human gut Micriobiome
人类肠道微生物组中碳水化合物代谢的新生化途径
- 批准号:
10063528 - 财政年份:2017
- 资助金额:
$ 30.6万 - 项目类别:
相似国自然基金
手性酰胺类农药污染的农业土壤中抗生素抗性基因传播扩散的对映选择性机制
- 批准号:42377238
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
靶向琥珀酸脱氢酶的新型酰胺类衍生物的设计合成、杀线虫活性及构效关系研究
- 批准号:32360687
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
烟酰胺类生物氢人工光合成过程研究
- 批准号:22309149
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
两个直线型酰胺类生物碱的结构优化、构效关系及作用机理研究
- 批准号:32372603
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
中国典型地区大气细颗粒物中新型双酰胺类杀虫剂的污染特征及细胞毒性研究
- 批准号:22376190
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Bridging Project 1: Amidohydrolase (AH) Superfamily
桥接项目 1:酰胺水解酶 (AH) 超家族
- 批准号:
7980207 - 财政年份:2010
- 资助金额:
$ 30.6万 - 项目类别:
Structural Analysis of Mechanism and Regulation of Glutamine Amidotransferases
谷氨酰胺酰胺转移酶机制和调控的结构分析
- 批准号:
8211407 - 财政年份:2010
- 资助金额:
$ 30.6万 - 项目类别:
Structural Analysis of Mechanism and Regulation of Glutamine Amidotransferases
谷氨酰胺酰胺转移酶机制和调控的结构分析
- 批准号:
8390478 - 财政年份:2010
- 资助金额:
$ 30.6万 - 项目类别:
Deciphering Enzyme Specificity: Amidohydrolase Superfamily
破译酶的特异性:酰胺水解酶超家族
- 批准号:
8377287 - 财政年份:
- 资助金额:
$ 30.6万 - 项目类别: