Structural Analysis of Mechanism and Regulation of Glutamine Amidotransferases
谷氨酰胺酰胺转移酶机制和调控的结构分析
基本信息
- 批准号:8390478
- 负责人:
- 金额:$ 3.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-12-01 至 2014-11-30
- 项目状态:已结题
- 来源:
- 关键词:Active SitesAdenosineAffinityAllosteric RegulationAmidesAmidohydrolasesAmino AcidsAmino SugarsAmmoniaAntibiotic TherapyBasic ScienceBindingBinding SitesBiological ProcessC-terminalCTP synthaseCatalysisCoenzymesComplexCytosineEnzymesFamilyFoundationsGTP BindingGlutaminaseGlutamineGoalsGuanosine TriphosphateHomologous GeneHydrolysisIndividualIonsLeadLigaseLocationMetalsModelingMultienzyme ComplexesMutagenesisMutationN-terminalNitrilaseNitrogenOrganismPathway interactionsPlayPositioning AttributeProteinsPurine NucleotidesPyridoxal PhosphatePyrimidine NucleotidesRegulationRoleSourceStructureSystemTailTransfer RNATriad Acrylic ResinVariantactivation productamidasecancer therapydivalent metalinorganic phosphateinsightinterestmutantpreventprotein complexpublic health relevanceribose-5-phosphatesmall moleculetripolyphosphate
项目摘要
DESCRIPTION (provided by applicant): The glutamine amidotranferases (GATs) are responsible for the hydrolysis of glutamine to produce ammonia for a diverse array of biosynthetic pathways. Thus far, there are 16 known GATs, all of which are modular and classified by their glutaminase domains. These domains are from four different ancestral groups: N-terminal nucleophile GATs (Ntn), Triad GATs, amidase GAT and Nitrilase GAT. In addition to their glutaminase domains, GATs have a second active site within their synthase domains. In this active site the ammonia produced from the glutaminase domain is combined with acceptor substrates for the synthesis of amino acids, purine and pyrimidine nucleotides, amino sugars and coenzymes. The progression of catalysis from the glutaminase domain to the synthase domain is highly regulated by substrate binding and the mechanism by which this regulation is achieved is GAT dependent. Given their importance in biosynthetic pathways, they are targets for potential antibiotic and anticancer therapies. Furthermore, they provide a model to study multi-step catalysis with a hierarchy of regulation. In this study we are interested in investigating the structural changes induced by either binding of the acceptor substrates or binding of a non-substrate small molecule and which specific residues propagate the conformational changes that are essential to the mechanism. Although all GATs share the ability to hydrolyze glutamine, their synthetase domains vary. This variation has lead to variations in how each GAT responds to the binding of their substrates. To expose which residues are critical to GATs from different ancestral groups three different GATs (pyridoxial 5'phosphate synthase from G. stearothemophilus, and GatCAB and cytosine triphosphate synthetase from A. aeolius) will be co-crystallized with their substrates in order to capture snapshots of their mechanisms. In aim 1 an inactive PLP synthase mutant will be co-crystallized with its substrates. It is anticipated that this inactivating mutation will order the C-terminal tail of the PdxS subunit. A region that is essential to the complex's function. This will demonstrate how multi-subunit GATs communicate between subunits. Aim 2 will focus on the role of the two divalent metals bound within GatCAB and how these metals are used to spatially orient all its substrates. Aim 3 will identify why CTP synthetase uses a small molecule, GTP, instead of its substrates to induce conformational changes that enhance activity. CTP synthetase from A. aeolius is unique compared with its homologs from other organisms due to its significantly higher affinity for GTP. Understanding the mechanism behind these complex enzymes will provide a paradigm for structural studies for other multi-modular systems.
描述(由申请人提供):谷氨酰胺酰胺转移酶(GAT)负责水解谷氨酰胺以产生用于多种生物合成途径的氨。迄今为止,已知的 GAT 共有 16 种,所有这些 GAT 都是模块化的,并按其谷氨酰胺酶结构域进行分类。这些结构域来自四个不同的祖先组:N 端亲核体 GAT (Ntn)、三联体 GAT、酰胺酶 GAT 和腈水解酶 GAT。除了谷氨酰胺酶结构域外,GAT 的合酶结构域内还有第二个活性位点。在这个活性位点,谷氨酰胺酶结构域产生的氨与受体底物结合,合成氨基酸、嘌呤和嘧啶核苷酸、氨基糖和辅酶。从谷氨酰胺酶结构域到合酶结构域的催化进程受到底物结合的高度调节,并且实现这种调节的机制是 GAT 依赖性的。鉴于它们在生物合成途径中的重要性,它们是潜在抗生素和抗癌疗法的目标。此外,他们提供了一个模型来研究具有层次调节的多步催化。在这项研究中,我们有兴趣研究由受体底物的结合或非底物小分子的结合引起的结构变化,以及哪些特定残基传播对该机制至关重要的构象变化。尽管所有 GAT 都具有水解谷氨酰胺的能力,但它们的合成酶结构域有所不同。这种变化导致每个 GAT 对底物结合的反应方式发生变化。为了揭示哪些残基对来自不同祖先群体的 GAT 至关重要,三种不同的 GAT(来自 G. starothemophilus 的吡哆醛 5' 磷酸合酶,以及来自 A. aeolius 的 GatCAB 和胞嘧啶三磷酸合成酶)将与其底物共结晶,以便捕获快照他们的机制。在目标 1 中,无活性的 PLP 合酶突变体将与其底物共结晶。预计这种失活突变将使 PdxS 亚基的 C 末端尾部排序。对于综合体功能至关重要的区域。这将演示多子单元 GAT 如何在子单元之间进行通信。目标 2 将重点关注 GatCAB 中结合的两种二价金属的作用,以及如何使用这些金属对所有底物进行空间定向。目标 3 将确定为什么 CTP 合成酶使用小分子 GTP 而不是其底物来诱导构象变化,从而增强活性。与来自其他生物体的同源物相比,来自风神杆菌的 CTP 合成酶是独特的,因为它对 GTP 的亲和力显着更高。了解这些复杂酶背后的机制将为其他多模块系统的结构研究提供范例。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amber Marie Smith其他文献
Amber Marie Smith的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amber Marie Smith', 18)}}的其他基金
Structural Analysis of Mechanism and Regulation of Glutamine Amidotransferases
谷氨酰胺酰胺转移酶机制和调控的结构分析
- 批准号:
8211407 - 财政年份:2010
- 资助金额:
$ 3.32万 - 项目类别:
Structural Analysis of Mechanism and Regulation of Glutamine Amidotransferases
谷氨酰胺酰胺转移酶机制和调控的结构分析
- 批准号:
7910122 - 财政年份:2010
- 资助金额:
$ 3.32万 - 项目类别:
相似国自然基金
腺苷酸转位酶在SARS-CoV-2感染中的作用及分子机制研究
- 批准号:32302955
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
靶向RNA腺苷脱氨酶(ADAR1)的抑制剂发现与抗肿瘤活性研究
- 批准号:82304379
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
去腺苷酸化酶CNOT6L抑制结肠炎癌转化中CD8+T细胞功能的分子机制及其靶标属性探讨
- 批准号:82304557
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
GelMA水凝胶负载腺苷经破骨细胞MAPK/AP1信号轴促进骨质疏松性颌骨缺损修复的研究
- 批准号:82301041
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
内含子多聚腺苷酸化介导的肿瘤易感基因的识别及调控模式研究
- 批准号:32370721
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Design and Development of Inhibitors of Methionine Adenosyltransferase for Cancer Treatment
用于癌症治疗的蛋氨酸腺苷转移酶抑制剂的设计和开发
- 批准号:
9899959 - 财政年份:2018
- 资助金额:
$ 3.32万 - 项目类别:
Mapping the Ligand-Modulated Conformational Landscape of GPCRs
绘制 GPCR 配体调节的构象图谱
- 批准号:
8594673 - 财政年份:2013
- 资助金额:
$ 3.32万 - 项目类别:
Engineering Inhibitory Antibodies to Ectoenzymes for Cancer Treatment
用于癌症治疗的胞外酶工程抑制性抗体
- 批准号:
8309768 - 财政年份:2012
- 资助金额:
$ 3.32万 - 项目类别:
Mechanisms of Radical-Dependent Biological Methylation
自由基依赖性生物甲基化机制
- 批准号:
8461575 - 财政年份:2012
- 资助金额:
$ 3.32万 - 项目类别:
Engineering Inhibitory Antibodies to Ectoenzymes for Cancer Treatment
用于癌症治疗的胞外酶工程抑制性抗体
- 批准号:
8451262 - 财政年份:2012
- 资助金额:
$ 3.32万 - 项目类别: